Long-baseline intensity interferometry: data transmission and correlation

Erez Ribak

Department of Physics Technion – Israel Institute of Technology

Workshop on Hanbury Brown & Twiss interferometry Nice, 13 May 2014

Participants

- Graduate (MSc) students
 - Coral Moreno
 - Yaron Shulamy
- Faculty
 - S. G. Lipson
 - Pini Gurfil
- Technical support
 - Dr Dan Spektor
 - Hovik Agalarian
 - Communications lab, EE dept.
 - Distributed Space Systems Lab

13 May 2014, Nice, France

Contents

- Why intensity interferometry
- Why revival
- New possibilities
- Previous experiments
- Correlation at a distance
- Transmitting the intensities
- Future directions
- Summary

Amplitude interferometry pioneers

- Stephan, inside the aperture, 1870
 0.8 m
- Michelson, outside the aperture, 1920
 - 6 m
- (HBT, 1965-72)

Labeyrie, outside the telescope, 1975
13 m

-80cm-

13 May 2014, Nice, France

Why intensity interferometry

- Science developments
 - Quantum physics
 - Astrophysical knowledge
- Technology developments
 - Fast detectors
 - Radio technology
 - Light collectors
 - Fast electronics
 - Correlators
 - Coaxes

• Human intervention not necessary (cf. Michelson's eye)

Why revival

- Science developments
 - Astrophysical knowledge
 - Photonics
 - Other fields of physics: particles, biophysics
- Technology developments
 - Detectors: faster and redder
 - Electronics: faster and digital
 - Optics: fibres
 - Space

New possibilities

- Science developments
 - Astrophysical knowledge
 - photonics
- Technology developments
 - Detectors: faster and redder
 - Electronics: faster and digital
 - Optics: fibres
 - Space
- New opportunities
 Ĉerenkov arrays
 - Antarctica

13 May 2014, Nice, France

Previous experiments (Technion) If

source

source

 k_{r}

 k_{x}

 k_x

 k_{v}

- Theoretical studies
 - Ofir and Ribak: higher-order correlations
 - Klein, Guellman, Lipson: space
 - All wavelengths possible
 - Formation flight
 - Satellites orbits
 - Keeping constant baselines
 - Optimal fuel consumption
 - Control laws

Workshop on Hanbury Brown & Twiss interferometry

source

Previous experiments (Technion) III

- Theoretical studies
 - Ofir and Ribak: higher-order correlations
 - Klein, Guellman, Lipson: space intensity interferometry
- Laboratory studies
 - Spektor, Lipson, Ribak
 - Blue LEDs metres from Fresnel lenses
 - Fast photomultipliers, lock-in amp.
 - 2000's correlation electronics: AD8302

Correlation at a distance

- Asher Space Research Institute
 - Physics and Aeronautics
- Distributed Space Systems Laboratory
 - ERC support
 - Air table, vehicle location
 - Dark room

Workshop on Hanbury Brown & Tw

Components I

Three receivers

0.95 GHz bandwidth @ 3.1, 4.2 & 5.9 GHz

Antenna

Common antenna

Photomultiplier Light collector Tilt mechanism Preamplifier + transmitter Rotation propellers

13 May 2014, Nice, France

Components II

- Analogue-to-digital converters
 - Up to 5 giga-samples per second (GSPS)

- Virtex-6 FPGA
 - Delay
 - Correlation
 - Integration
 - Transfer to host PC

Dark-room experiment

1

13 May 2014,

Beam-splitter (non-polarising) Two channels Blue LED +

pin-hole

Twiss interferometry

Typical input

- Three channels (red inactive)
- LED: 415 nm. Power: 2.8 W. Pin-hole: $15 \mu m$. H = 78 cm. D = 0 cm.

13 May 2014, Nice, France

Electronic delay

Correlation of 15MHz modulated LED

15 MHz Modulated Blue LED , Duty Cycle = 20% , $h = 78 \ cm$, d=0

Cables – Same length

Cable A is longer by 2.5m

Cable B is longer by 2.5m

13 May 2014, Nice, France

Workshop on Hanbury Brown & Twiss interferometry

18

Digital band-width

- Short integration times
- Effective continuous sample rates
- Our setup: 3×500,000 samples / 0.8 s = 1.875 Msamples / s
- HBT: 24 MHz \times 2 = 48 Msamples / s
- HBT integration time: 1.5 h
- For the same number of samples we need to integrate for 38 h
- Solution: clip measurements, use 1 bit correlation (not 10 bit)
- Also: remove all mobile phone signals (use µ-metal shield)

Transmitting the intensities

- Growing baselines, on the ground and in space
- Coaxial transmission difficult or impossible
- Fibre optics for stellar light transmission not likely
 - Limited space-bandwidth product: low efficiency
 - Delay still has to be performed electronically or mechanically
- Can we compress the detected currents?
- We first check the method of Compressed Sensing

13 May 2014, Nice, France

Compressed sensing: matrix notation

Sparse and Redundant Representation Modeling of Signals – Theory and Applications By Michael Elad

13 May 2014, Nice, France

13 May 2014, Nice, France

Poisson noise in Fourier domain

Correlation (circle radius) buried in Poisson noise
Dropping frequencies drops points, not noise

13 May 2014, Nice, France

Other compression methods

13 May 2014, Nice, France

13 May 2014, Nice, France

Future directions

- System improvement steps
 - Rewrite correlator to 1 bit to improve flow
 - Add third channel, test closure
 - Test on moving platforms
 - Test other compression options

Research directions

- Use electronic analog correlation (still faster)
- Use photonic correlation (e.g. HBT in OCT)
 - Nonlinear optics
 - Requires very narrow beams, optical delay lines

Summary

- We built a lab system to test space HBT
 - Integration and testing proceeding
- Checked the options of compressing data
 - Compressed sensing depends on reduced band-width
 - Requires widest band possible
 - Other compression methods useful at low flux