
Long-baseline intensity interferometry: 
data transmission and correlation 

Erez Ribak 
Department of Physics 

Technion – Israel Institute of Technology 
 

Workshop on Hanbury Brown & Twiss interferometry 
Nice, 13 May 2014 



Participants  

 Graduate (MSc) students 
 Coral Moreno 
 Yaron Shulamy 

 Faculty  
 S. G. Lipson 
 Pini Gurfil 

 Technical support 
 Dr Dan Spektor 
 Hovik Agalarian  
 Communications lab, EE dept. 
 Distributed Space Systems Lab  

 13 May 2014, Nice, France Workshop on Hanbury Brown & Twiss interferometry 2 



Contents  

 Why intensity interferometry 
 Why revival 
 New possibilities 
 Previous experiments 
 Correlation at a distance 
 Transmitting the intensities 
 Future directions 
 Summary  

 

13 May 2014, Nice, France Workshop on Hanbury Brown & Twiss interferometry 3 



Amplitude interferometry pioneers 

 Stephan, inside the aperture, 1870 
 0.8 m 

 Michelson, outside the aperture, 1920 
 6 m 

 (HBT, 1965-72) 
 
 

 Labeyrie, outside the telescope, 1975 
 13 m 
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Why intensity interferometry  

 Science developments 
 Quantum physics 
 Astrophysical knowledge 

 Technology developments 
 Fast detectors 
 Radio technology 

 Light collectors 
 Fast electronics 
 Correlators  
 Coaxes  

 Human intervention not necessary (cf. Michelson’s eye) 
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Why revival  

 Science developments 
 Astrophysical knowledge 
 Photonics  
 Other fields of physics: particles, biophysics 

 Technology developments 
 Detectors: faster and redder 
 Electronics: faster and digital  
 Optics: fibres  
 Space  
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New possibilities  

 Science developments 
 Astrophysical knowledge 
 photonics 

 Technology developments 
 Detectors: faster and redder 
 Electronics: faster and digital  
 Optics: fibres  
 Space  

 New opportunities 
 Ĉerenkov arrays 
 Antarctica  
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Previous experiments (Technion) I 

 Theoretical studies 
 Ofir and Ribak: higher-order correlations 
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NSII performance: 0m star, 1 hr,  SNR=27  
bν = 100MHz, α = 0.2, Σ = 0.2, m = 1  

 bν → 1GHz, α → 0.8, Σ → 0.8, m=1 

4.91 

4.99 

bν = electronic bandwidth 
α = quantum efficiency 
Σ = system efficiency 
m = optical channels 

dishes 



Previous experiments (Technion) II 

 Theoretical studies 
 Ofir and Ribak: higher-order correlations 
 Klein, Guellman, Lipson: space 

 All wavelengths possible 
 Formation flight 

 Satellites orbits 
 Keeping constant baselines 
 Optimal fuel consumption 
 Control laws 
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Previous experiments (Technion) III 

 Theoretical studies 
 Ofir and Ribak: higher-order correlations 
 Klein, Guellman, Lipson: space intensity interferometry 

 Laboratory studies 
 Spektor, Lipson, Ribak 

 Blue LEDs metres from Fresnel lenses 
 Fast photomultipliers, lock-in amp. 
 2000’s correlation electronics: AD8302 
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no signal with signal 

LED spectrum 



Correlation at a distance 

 Asher Space Research 
Institute 
 Physics and Aeronautics 

 Distributed Space Systems 
Laboratory 
 ERC support 
 Air table, vehicle location 
 Dark room 
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Scheme  
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Components  I 
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Light collector 

Photomultiplier 

Preamplifier 
+ transmitter  

Antenna  Common 
antenna  

Three 
receivers 

Tilt mechanism 

Rotation propellers 

0.95 GHz bandwidth 
@ 3.1, 4.2 & 5.9 GHz 



Components  II 
 Analogue-to-digital 

converters 
 Up to 5 giga-samples 

per second (GSPS) 

 
 
 

 Virtex-6 FPGA 
 Delay 
 Correlation  
 Integration  
 Transfer to host PC 
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Dark-room experiment  
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Blue LED + 
pin-hole 

Beam-splitter 
(non-polarising) 
Two channels 



Dark-room set-up  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Some experiments: switch A/D and correlator by fast scope and memory 
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Typical input 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Three channels (red – inactive) 
 LED: 415 nm. Power: 2.8 W. Pin-hole: 15 µm. H = 78 cm. D = 0 cm.  
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Electronic delay 
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Cable B is longer by 2.5m Cable A is longer by 2.5m Cables – Same length 
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Electronic delay 
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Maximum Correlation for different baselines Correlations for different baselines 
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Digital band-width 
 Short integration times 
 Effective continuous sample rates 
 Our setup: 3×500,000 samples / 0.8 s = 1.875 Msamples / s 
 HBT: 24 MHz × 2 = 48 Msamples / s 
 HBT integration time: 1.5 h 
 For the same number of samples we need to integrate for 38 h 
 Solution: clip measurements, use 1 bit correlation (not 10 bit) 
 Also: remove all mobile phone signals (use µ-metal shield) 
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Transmitting the intensities 
 Growing baselines, on the ground and in space 
 Coaxial transmission difficult or impossible 
 Fibre optics for stellar light transmission not likely 

 Limited space-bandwidth product: low efficiency 
 Delay still has to be performed electronically or 

mechanically 

 Can we compress the detected  currents? 
 We first check the method of Compressed Sensing 
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Compressed sensing principle 
 Original time trace 

 
 
 Requires dense sampling 

 

 After using the proper filter (e.g. low-pass, wavelets) 
 
 
 Allows sparser sampling 
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Compressed sensing: matrix notation 
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Sparse and Redundant Representation Modeling of Signals – 
Theory and Applications  
By Michael Elad 
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The correlation properties 
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Taking a simple case 
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A simple case: Fourier domain 
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Poisson noise in Fourier domain 
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Other compression methods 
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Compression efficiency 
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Future directions 

 System improvement steps 
 Rewrite correlator to 1 bit to improve flow 
 Add third channel, test closure 
 Test on moving platforms 
 Test other compression options 
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Research directions 

 Use electronic analog correlation (still faster) 
 Use photonic correlation (e.g. HBT in OCT) 

 Nonlinear optics 
 Requires very narrow beams, optical delay lines 
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Summary  

 We built a lab system to test space HBT 
 Integration and testing proceeding 

 Checked the options of compressing data 
 Compressed sensing depends on reduced band-width 
 Requires widest band possible 
 Other compression methods useful at low flux 
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