Calcium-Aluminum-rich Inclusions

Chondrules

Guy Libourel CRPG-CNRS, Nancy, France

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Constituents of Primitive Meteorites

20-80 % by volume of primitive meteorites (chondrites)

CAIs and Chondrules

(From Clayton, R., 1993, Oxygen Isotopes in Meteorites, Annu. Rev. Earth Planet. Sci., v.21, p. 123.)

CAIs average age is 4567.30 ± 0.16 My, which overlaps stage of Class 0 protostars. Chondrule formation began at the same time and continued for 2-3 My.

Calcium-aluminum-rich inclusions

 Refractory inclusions (left) condensed from gas of solar composition with O-isotopes similar to the Sun (see Genesis data point).

Calcium-Aluminum-rich Inclusions WORLD

Gehlinite		Spinel	Fassaite
Ca ₂ Al ₂ SiO ₇		MgAl ₂ O ₄	CaAl ₂ Si ₂ O ₆
Anorthite	Grossite	Melilite	Ca-titanate
CaAl ₂ Si ₂ O ₈	_{CaAl4} 07		Ca4Ti3O10
Perovskite _{CaTiO₃}		Akermanit Ca ₂ MgSi ₂ O ₇	e Krotite _{CaAl2} O4
Corunc	dum Hik	Donite	Dmisteinbergite
Al ₂ O ₃	_{5 Ca}	Al ₁₂ O ₁₉	CaAl ₂ Si ₂ O ₈
	Diopside	Fors	terite
	_{CaMgSi2} O ₆	Mg ₂	si0₄

Calcium-Aluminum-rich Inclusions WORLD

Calcium-Aluminum-rich Inclusions

Mineralogy and petrology

٠

۰

- Phase relations, thermodynamic
 - Case study
 - Experiments

CAI = refractory inclusion = White inclusion

Allende CV3 meteorite (fall 1969)

CAI = refractory inclusion = White inclusion

Calcium-aluminum-rich inclusions

- minor component: 0.1-5 vol%
- large size range: 10 µm to several cm
- sizes of CAIs differ between chondrite groups: size-sorted in the nebula

~4.7 Ga ago, "protosun"

 first solids (inner Solar System) formed by gas/solid condensation

Condensation calculations

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

• minerals that occur in CAIs condense at high temperatures

	Ideal Formula	Mineral Name	Solar System Composition (K)	Photospheric Composition (K)		
	Al ₂ O ₃	Corundum	1677	1665		
	CaAl ₁₂ O ₁₉	Hibonite	1659	1647		
()	CaAl ₄ O ₇	Grossite	1542	1531		
alo	$Ca_2Al_2SiO_7$	Gehlenite	1529	1519		
	CaTiO ₃	Perovskite	1593	1584	🔶 mir	
e	Ca4Ti3O10	Ca titanate	1578	1567		
.⊨	Ca ₃ Ti ₂ O ₇	Ca titanate	1539	1529	rici	
5	Ca4Ti3O10	Ca titanate	1512	1502	ΔΙ	
~	CaTiO ₃	Perovskite	1441	1429		
\triangleleft	MgAl ₂ O ₄	Spinel	1397	1387	(C)	
O	CaAl ₂ Si ₂ O ₈	Anorthite	1387	1378		
	Mg ₂ SiO ₄	Forsterite	1354	1346		
	MgSiO ₃	Enstatite	1316	1308		
	CaMgSi ₂ O ₆	Diopside	1347	1339		
	Fe	Fe alloy	1357	1351		
	Fe ₃ P	Schreibersite	1248	1245		
	FeS	Troilite	704	693	from	
	Fe ₃ O ₄	Magnetite	371	365	(2003	
	H ₂ O	Water ice	182	181		

MAJOR ELEMENT CONDENSATION TEMPERATURES

minerals
rich in Ca,
Al and Ti
(CAIs)

from Lodders (2003) *Astrophys. Journal*

NOTE.—At 10^{-4} bar total pressure.

Condensation calculations

condensation temperatures increase with increasing pressure

Condensation temperatures always a function of

- minerals (*in-out*)

be given for

Table 3. Temperatures of appearance and disappearance of stable condensates at several representative total pressures in the pressure regime where liquids are not stable.

temperatures are	Condensate (atm)		⁰⁻¹ × 10		1 × 10-5		1×10^{-4}		1×10^{-3}	
	Condonsato		In	Out	In	Out	In	Out	In	Out
aiways a	Corundum		1571	1481	1633	1558	1699	1643	1770	1740
function of	Hibonite		1485	1292	1562	1350	1647	1421	1743	1500
	Perovskite		1471	1257	1537	1317	1609	1380	1688	1448
	CaAl2O4									1444
	Conundum									1444
- nressure	Spinel ss									1409
pressure	Plagioclase ss									
- oxygen fugacity	Rankinite									
	Fassaite ss	INC	reas	ing	pres	sure	\rightarrow			
- thermodynamic	Spinel ss Forsterite						-41			
data usod	Plagioclase ss	INC	reas	ing o	conc	iensa	atior			
uala useu	Sphene Enstatite	tem	pera	ature	9					
	Spinel ss		1161		1196		1217		1221	
Condensation	Ti ₃ O ₅								1386	1361
Condensation	Ti4O7				1252	1217	1324	1216	1361	1217
temperatures can	Sphene		1222		1217		1216		1217	
			1214		1287		13/0		1404	
data used Condensation temperatures can	Plagioclase ss Sphene Enstatite Spinel ss Ti ₃ O ₅ Ti ₄ O ₇ Sphene Metal	tem	1161 1222 1214	ature	1196 1252 1217 1287	1217	1217 1324 1216 1370	1216	1221 1386 1361 1217 1464	1361 1217

from Ebel and Grossman (2000) Geochim. Cosmochim. Acta

Fig. 1. Comparison of published results for vapor of solar composition (see section 3.1.2). Mineral abbreviations are $t_3 = Ti_3O_5$, $t_4 = Ti_4O_7$, $C4T3 = Ca_4Ti_3O_{10}$, $C3T2 = Ca_3Ti_2O_7$, $s_P = Al$ -spinel, $c_P = Ca_2Ti_2O_7$, $s_P =$

Courtesy of A. Davis

<u>**C</u>ondensation <u>W**</u>ith <u>**P**</u>artial <u>I</u>solation model*</u>

As condensation proceeds a specified fraction of the existing condensate is withdrawn from reactive contact with the residual gas so that:

- System contains two categories of condensate *Reactive solids* and *Inert solids*
- *Reactive solids (M_r)* are exposed to the residual gas and remain in complete equilibrium with it
- Inert solids (M_i) are isolated from the residual gas
- Isolation degree ξ is the relative amount (% per K) of reactive solids that is withdrawn from the reactive system at any given temperature interval
- Isolation rate (dM_i/dT) is the absolute amount of reactive solids, Δm_i (moles), that is withdrawn from the reactive system at any given temperature interval

* Petaev M. I. and Wood J. A. (1998) MAPS 33, 1123-1137.

<u>**C**</u>ondensation <u>**W**</u>ith <u>**P**</u>artial <u>I</u>solation model

Fine-grained inclusions

Hibonite-bearing inclusions

Calcium-aluminum-rich inclusions

- irregularly-shaped (unmelted?) & spheroidal (melted) CAIs; coexist within a chondrite
- irreg.-shaped, fine-grained, porous inclusions with characteristic volatilitycontrolled rare earth element (REE) patterns (Type II): *solid condensates*

Corundum bearing fine-grained inclusions

Fine-grained spinel-rich CAI

Fine-grained spinel-rich CAI

Amoeboid olivine aggregates (AOAs)

- aggregates of CAIs, forsterite (Mg₂SiO₄), and metallic Fe-Ni
- minor component: 0.1-5 vol.%; 10 μm to 5 mm in size
- fine-grained: 5-20 μm; porous; irregularly shaped
- condensed from gas of solar composition at 1350-1450 K

H. Leroux26 janvier 2012AOA VIGARANO G. Libourel

000015 20KV X1.50K 20.0um

AOA 20

E-Beam Spot Det Mag FWD 3.00 kV 3 TLD-C 12.0 kX 5.296

Scan

5 µm

Corse-grained inclusions

Type A CAI ON01 of the Allende carbonaceous chondrite (Park et al. 2012)

Compact Type A

Corse-grained inclusions

Type B1 CAI Efremovka CV

Igneous CAIs: Compact Type A, Type B, Type C

Complex Igneous CAIs

MacPherson et al. 2012

Fig. 2. False-color X-ray element maps of the three lithologic units in Vigarano 3138 F4, superimposed onto back-scattered electron images. Colors as in Fig. 1.
Not all CAIs formed at "time zero",

Fig. 2. False-color X-ray element maps of the three lithologic units in Vigarano 3138 F4, superimposed onto back-scattered electron images. Colors as in Fig. 1.

SHIBS Inclusions

Hibonite spherules

Wark-lovering rims

- Bulk compositions of igneous CAIs are depleted in Si & Mg compared to the calculated compositions of condensates

- Such depletions can be explained by non-equilibrium evaporation into H_2 gas at 1700 K from melt droplets with compositions on a condensation trajectory

Wt % MgO

Wt % MgO

Grossman et al. (2000)

Grossman et al. (2000)

⁽Krot et al. 2004; Petaev & Wood, 1998

CAIs in ACFER 094

Table 1. Mineralogy of refractory inclusions found in thin section USNM 7233-1.

Mineralogy	No. of objects	% of objects
$Sp + Mel \pm Pv$	65	22.5
$\hat{Sp} + Pv$	47	16.3
Sp	28	9.7
An+Pyx	28	9.7
$Hib + Sp + Mel \pm Pv$	20	7.0
Sp + An + Diop	17	5.9
Sp + Pyx	11	3.8
Sp+An	10	3.5
Sp + Mel + Tpyx	8	2.8
$Hib + Gro + Sp + Mel \pm Pv$	8	2.8
Mel+An+Sp	8	2.8
Mel+An+Pyx	7	2.4
$Hib \pm Sp \pm Pv$	6	2.1
Gro + Sp + Mel + Pv	5	1.7
Mel+An	5	1.7
Sp + Mel + Diop + An	2	0.7
Mel + Pv + An	2	0.7
Gro + Pv + Sp	2	0.7
Tpyx + Diop + pv	2	0.7
Cor+Hib	1	0.3
Hib+Sp+Fo	1	0.3
Hib+Mel	1	0.3
Sp+Tpyx+An	1	0.3
Sp + Mel + Diop + Pv	1	0.3
Sp + Mel + Fo + FeS + Diop	1	0.3
Mel+Pv	1	0.3
Mel+Diop+Fo	1	0.3

Sp = spinel; Mel = melilite; Pv = perovskite; An = anorthite; Pyx = pyroxene; Hib = hibonite; Diop = diopside; Tpyx = Ti-bearing pyroxene; Gro = grossite; Cor = corundum; Fo = forsterite. "Pyx" indicates that some members of the group contain diopside and others contain Tpyx.

Simon & Grossman. 2012

There are no known nebular conditions under which the refractory phases found in Acfer 094 could acquire FeO enrichments to the observed levels !!!!

Redox of the solar gas

In the high-temperature interval where reaction kinetics are most favorable, the fO2 of a gas of solar composition lies so far below IW that only vanishingly small concentrations of FeO would be expected in silicates that equilibrate with metallic Ni-Fe.

Enhancing fo2 at fixed total pressure

Fedkin & Grossman 2011

FeO enrichment in silicates

Origin of oxidized iron in the solar system

Fig. 8. Increasing the dust/gas ratio as a means to increase oxygen fugacity would simultaneously increase the partial pressures of all other elements. The results of such calculation are shown here. The forsterite-fayalite solid-solution field is shifted to higher temperatures, suggesting that olivine in Allende may never have experienced an environment as reducing as that of the solar nebula.

Palme & Fegley 1990

Evaluation of the redox of the solar gas

Ti³⁺/Ti⁴⁺ ratio in refractory phases

Table 1. Ti valence by XANES. Sp: spinel; Px: pyroxene;

HD:	hibonit	te; Pv:	perovs	kite; Mo	el: melilit	te.

Sample	Mineral.	Spinel	Pyroxene	Hibonite
M98L1	Sp-Pv-Px	3.63±0.07	3.45±0.06	-
M98L4	Hb-Sp-	3.74±0.07	-	3.82±0.07
	Pv-Mel			
M98L5	Hb-Sp-Pv	3.77±0.08	-	3.73±0.04
M98L6	Hibonite	-	-	3.43±0.16
M98L10	Sp-Px	3.35±0.07	3.27±0.07	-
M98L12	Sp-Px	3.45±0.05	3.50±0.08	-

Simon et al. 2009, 2011

Ti³⁺/Ti⁴⁺ ratio in hibonite

Figure 1. The hibonite structure (Bermanec et al. 1996). Orange spheres = Ca sites; dark green spheres = M1 octahedral sites; light green spheres = M2 trigonal bipyramidal sites; red tetrahedra = M3 sites; blue octahedra = M4 sites; yellow octahedra = M5 sites.

Ti3+/Ti4+ ratio can be used to estimate the oxygen fugacity,

$$M^{3+} = Al^{3+}, \ M^{2+} + M^{4+} = 2Al^{3+}, \ 2M^{2+} + M^{5+} = 3Al^{3+}$$

Beckett et al. (1988)

Available online at www.sciencedirect.com

Geochimica et Cosmochimica Acta 75 (2011) 937-949

Geochimica et Cosmochimica Acta

www.elsevier.com/locate/gca

Valence state of titanium in the Wark–Lovering rim of a Leoville CAI as a record of progressive oxidation in the early Solar Nebula

Kathryn A. Dyl^{a,*}, Justin I. Simon^{b,c}, Edward D. Young^{a,d}

^a Department of Earth and Space Sciences, UCLA, Los Angeles, CA 90095, United States ^b Center for Isotope Geochemistry, UC Berkeley, Berkeley, CA 94720, United States ^c Berkeley Geochronology Center, Berkeley, CA 94709, United States ^d Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA 90095, United States

Received 15 October 2009; accepted in revised form 23 September 2010; available online 31 October 2010

Fig. 1. BSE image of Leoville 144A Wark–Lovering rim. Bands of spinel + hibonite \pm perovskite (sp–hib, pv), melilite (mel), Al-Ti diopside (Ti-rich px), and Al-diopside (Al-di) are observed.

... and the comments of Simon et al., 2012

Type A CAI

Minerals from a CAI and its prominent rim have a wide range of oxygen isotopic composition, suggesting formation in more than one reservoir.

Oxygen Isotopic Zoning

• Melilite interior has high ¹⁶O (low Δ^{17} O)

- $\Delta^{\rm 17}{\rm O}$ increases (so $^{\rm 16}{\rm O}$ decreases) towards the rim

• Spinel-rich region of Wark-Lovering rim has extremely low $\Delta^{17}O$

• Most of the rim oscillates around the value of the CAI interior

• These data clearly indicate exposure of the CAI and its rim to environments that varied in oxygen isotopic composition

• Implies extensive migration throughout the solar nebula

CAI formation

rayonnement IR dans le vide

(Larimer & Grosmmann, 1977, etc

See E. Taillifet poster

Occurrence of CAI in Wild 2 comet

High temperature condensation of a solar gas : *Nebulotron*

<u>Goals :</u>

✓ Equilibirum or non equilibrium condensation

✓ condensation of refactory gases

✓ P, T, t controlled

Stellar environments :

An experimental exploration

High temperature condensates from a solar gas composition.

New generation of Nebulotron (VI)

Kropf *et al*., 2010 Marrocchi *et al*., 2010, 2011

New generation of Nebulotron (VI)

Condensation of the first solid in the solar system

Constraints on the origin of refractory inclusions

- formed early, possibly within 10⁵ years of Sun formation

- formed in the high-temperature nebular region(s) (>1350 K), probably in the inner part of the disk

- formed under reduced (solar) conditions (e.g., Ti³⁺)

- preserved volatility-controlled REE patterns \rightarrow CAIs or their precursors formed by evaporation-condensation processes; some were subsequently melted & cooled at 1-100 K/hr

- CAI melts experienced volatilization (experienced mass-dependent fractionation of Mg, Si, O isotopes) \rightarrow low total pressure (<10⁻⁴ bar)

- were subsequently isolated (physically or kinetically) from hot nebular gas

Calcium-Aluminum-rich Inclusions WORLD

Geh	linite	Spinel	Fassaite
_{Ca2} A	I ₂ SiO7	MgAl ₂ O ₄	CaAl ₂ Si ₂ O ₆
Anorthite	Grossite	Melilite	Ca-titanate
CaAl ₂ Si ₂ O ₈	_{CaAl4} 07		Ca4Ti3O10
Perov Ca	vskite ⊓O₃	Akermanit Ca ₂ MgSi ₂ O ₇	e Krotite _{CaAl2} O4
Corunc	dum Hik	Donite	Dmisteinbergite
Al ₂ O ₃	_{5 Ca}	Al ₁₂ O ₁₉	CaAl ₂ Si ₂ O ₈
	Diopside	Fors	terite
	_{CaMgSi2} O ₆	Mg ₂	si0₄
Condensation calculations

- How do they work?
 - starting composition: Solar composition, analysis of photosphere (spectroscopy) & chondrites (chemical

analysis)

	Ionization	Photospheric abundance	Log ₁₀ solar abundance above typical quiet regio			
Element	(eV)	Log ₁₀	$3 \times 10^4 \le T \le 8 \times 10^5 \text{ K}$	$\sim 1.4 \times 10^6 \ {\rm K}$		
1 H	13.6	12.00	12.00	12.00		
2 He	24.6	10.93	10.93	10.93		
6 C	11.3	8.52	8.52	8.52		
7 N	14.5	7.92	7.92	7.92		
8 O	13.6	8.83	8.83	8.83		
10 Ne	21.6	8.11	8.11	8.11		
11 Na	5.1	6.32	6.62	6.92		
12 Mg	7.6	7.58	7.88	8.18		
13 Al	6.0	6.49	6.79	7.09		
14 Si	8.2	7.56	7.86	8.16		
16 S	10.4	7.33	7.33	7.33		
18 Ar	15.8	6.59	6.59	6.59		
20 Ca	6.1	6.35	6.65	6.95		
26 Fe	7.9	7.50	7.80	8.10		
28 Ni	7.6	6.25	6.55	6.85		

Starting composition

 Solar photosphere and meteorites have approximately the same (relative) abundances of condensable elements

Condensation calculations: HowTo

- Calculation of gas phase chemistry
 - basic thermodynamic data (c_p -functions, S^0_{298} , ΔH^0_{298}) are available from various sources (NIST-JANAF tables, CODATA, Robie *et al.*, 1984, ...)
- example: which are the stable components of "Si"
 - three gaseous components: Si(g), SiO(g) & SiO₂(g) Si(g) + 0.5 O₂ = SiO(g) (1) Si(g) + O₂ = SiO₂(g) (2)

What are the proportions of the components in the gas?

- two equations, two unknowns (e. g. SiO, SiO₂)
 - third is then known: $n(Si) = n(Si_{tot}) n(SiO) n(SiO_2)$

Condensation calculations: HowTo

- Calculation of gas phase chemistry
 - three gaseous components: Si(g), SiO(g) & SiO₂(g) Si(g) + 0.5 O₂ = SiO(g) (1) Si(g) + O₂ = SiO₂(g) (2)

(1):

$$K_{1} = \frac{p_{SiO}}{p_{Si} \times \sqrt{p_{O_{2}}}} \text{ with } \ln(K_{1}) = \frac{-\Delta G_{R(1)}}{R \times T}$$
re-aranging gives

$$\frac{-\Delta G_{R(1)}}{R \times T} + 0.5 \times \ln(p_{O_{2}}) = \ln \frac{p_{SiO}}{p_{Si}}$$

• $\Delta G_{R}(T,p)$ can be taken from thermodynamic databases

Condensation calculations: HowTo

- Calculation of gas phase chemistry
 - three gaseous components: Si(g), SiO(g) & SiO₂(g) Si(g) + 0.5 O₂ = SiO(g) (1)

Si(g) + O₂ = SiO₂(g) (2) (2): $K_{2} = \frac{p_{SiO_{2}}}{p_{Si} \times p_{O_{2}}} \text{ with } \ln(K_{2}) = \frac{-\Delta G_{R(2)}}{R \times T}$ re-aranging gives $\frac{-\Delta G_{R(2)}}{R \times T} + \ln(p_{O_{2}}) = \ln \frac{p_{SiO_{2}}}{p_{Si}}$

• $\Delta G_{R}(T,p)$ can be taken from thermodynamic databases

What are the proportions of the components in the gas?

- two equations, two unknowns (e. g. SiO, SiO₂)
 - third is then known: $n(Si) = n(Si_{tot}) n(SiO) n(SiO_2)$

• proportions can be calculated from tabulated (or calculated) ΔG_R data (for calculating K_R 's)

Gas-solid condensation (example forsterite condensation)

•
$$2 Mg(g) + SiO(g) + 3/2 O_2 = Mg_2SiO_4(s)$$

$$K_{3} = \frac{a_{fo}}{p_{Mg}^{2} \times p_{SiO} \times p_{O_{2}}^{\frac{3}{2}}} \text{ with } \ln(K_{3}) = \frac{-\Delta G_{R(3)}}{R \times T}$$

re-aranging gives
$$\frac{-\Delta G_{R(3)}}{R \times T} + \frac{3}{2} \ln(p_{O_{2}}) = \ln \frac{a_{fo}}{p_{SiO} \times p_{Mg}}$$

Oxygen fugacity buffered in a Solar gas

- gas is dominated by H & He (>99%)
 - C/O ratio of 0.5 (determines f_{O2}):
 - all C is bond to O as CO
 - rest (50%) of O is bond to H as H_2O
 - ratio H_2O/H_2 buffers f_{O2} in early Solar System reaction: $H + O_2 = H_2O$

Solar nebula was VERY reducing

 $\log f(O_2) \approx \text{Fe/FeO-buffer} - 6.5$

Gas phase \rightarrow condensates

- the pressure (H₂ + He) in the inner Solar System was approximately 10⁻³ to 10⁻⁶ bar
- condensation accompanied by drastic volume reduction
 - very pressure sensitive

gas forsterite • Reaction: 2 Mg(g) + SiO(g) + 3/2 O₂ = Mg₂SiO₄ T ≈ 1400K

ideal gas ($p = 10^{-5}$ bar)mineral grainscube: $V = 37.4 \times 37.4 \times 37.4$ m $V = 3.5 \times 3.5 \times 3.5$ cm

condensation = volume reduction (!)
 condensation = oxidation reaction (in many cases)

Gas phase \rightarrow condensates

- condensation temperatures increase
 - with increasing pressure
 - with increasing oxygen fugacity

• principle of *Henri Le Chatelier* (1850–1936)

If, to a system at equilibrium, a stress be applied, the system will react so as to relieve the stress.

"Full condensation code"

- e. g. Ebel and Grossman (2000):
 - 24 elements
 - 324 gas species
 - 84 pure minerals
 - Scomplex solid solutions (e. g. metal alloys, pyroxene)
 - silicate melt
- requires simultaneous solution of >400 non-linear equations
 - numerical solution (requires approximations, e. g. Newton-Ralphson method)

Condensation calculations

condensation temperatures increase with increasing pressure

Table 3.
 Temperatures of appearance and disappearance of stable condensates at several representative total pressures in the pressure regime where liquids are not stable.

Condensate Ptot (atm)	1 × 10-6 1 × 10-5		10-5	1 × 10 ⁻⁴		1 × 10-3		1 × 10 ⁻²		
Concontent	In	Out	In	Out	In	Out	In	Out	In	Out
Corundum	1571	1481	1633	1558	1699	1643	1770	1740		
Hibonite	1485	1292	1562	1350	1647	1421	1743	1500	1846	1 590 ×
Perovskite	1471	1257	1537	1317	1609	1380	1688	1448	1775	1523
CaAl ₂ O ₄									1724	1711
Melilite ss									1711	1505
Corundum										
Spinel ss								-	1591	1481
Plagioclase ss										
Rankinite	ino		ina r	roce		<u> </u>			1524	
Passalle ss	IIIC	leas	ing h	JIE2	sure	7			1524	
Spiner ss Forsterite	in even a long of the section							1525		
Plagioclase es	increasing condensation							1/29		
Sphene	tom	nor	ature						1400	
Enstatite	temperature								1435	
Spinel ss	1161		1196		1217		1221		1219	
Ti3O5							1386	1361	1454	1358
Ti4O7			1252	1217	1324	1216	1361	1217	1358	1220
Sphene	1222		1217		1216		1217		1220	
Metal	1214		1287		1370		1464		1574	

from Ebel and Grossman (2000) Geochim. Cosmochim. Acta

Condensation calculations

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

• minerals that occur in CAIs condense at high temperatures

	Ideal Formula	Mineral Name	Solar System Composition (K)	Photospheric Composition (K)	
	Al ₂ O ₃	Corundum	1677	1665	
	CaAl ₁₂ O ₁₉	Hibonite	1659	1647	
inerals	CaAl ₄ O ₇	Grossite	1542	1531	
	$Ca_2Al_2SiO_7$	Gehlenite	1529	1519	
	CaTiO ₃	Perovskite	1593	1584	🔶 mir
	Ca4Ti3O10	Ca titanate	1578	1567	
	Ca ₃ Ti ₂ O ₇	Ca titanate	Ca titanate 1539	1529	rich
5	Ca4Ti3O10	Ca titanate	1512	1502	ΔΙ
N N	CaTiO ₃	Perovskite	1441	1429	
	MgAl ₂ O ₄	Spinel	1397	1387	(C)
O	CaAl ₂ Si ₂ O ₈	Anorthite	1387	1378	
	Mg ₂ SiO ₄	Forsterite	1354	1346	
	MgSiO ₃	Enstatite	1316	1308	
	CaMgSi ₂ O ₆	Diopside	1347	1339	
	Fe	Fe alloy	1357	1351	
	Fe ₃ P	Schreibersite	1248	1245	
	FeS	Troilite	704	693	from
	Fe ₃ O ₄	Magnetite	371	365	(2003
	H ₂ O	Water ice	182	181	

MAJOR ELEMENT CONDENSATION TEMPERATURES

minerals
 rich in Ca,
 Al and Ti
 (CAIs)

from Lodders (2003) *Astrophys. Journal*

NOTE.—At 10^{-4} bar total pressure.

Fig. 1. Comparison of published results for vapor of solar composition (see section 3.1.2). Mineral abbreviations are $t_3 = Ti_3O_5$, $t_4 = Ti_4O_7$, $C4T3 = Ca_4Ti_3O_{10}$, $C3T2 = Ca_3Ti_2O_7$, $s_P = Al$ -spinel, $c_P = Ca_2Ti_2O_7$, $s_P =$

Courtesy of A. Davis

Condensation **W**ith **P**artial **I**solation model*

As condensation proceeds a specified fraction of the existing condensate is withdrawn from reactive contact with the residual gas so that:

- System contains two categories of condensate *Reactive solids* and *Inert solids*
- Reactive solids (M_r) are exposed to the residual gas and remain in complete equilibrium with it
- *Inert solids* (M_{i}) are isolated from the residual gas
- Isolation degree ξ is the relative amount (% per K) of reactive solids that is withdrawn from the reactive system at any given temperature interval
- Isolation rate (dM_i/dT) is the absolute amount of reactive solids, Δm_i (moles), that is withdrawn from the reactive system at any given temperature interval

* Petaev M. I. and Wood J. A. (1998) MAPS 33, 1123-1137.

<u>**C**</u>ondensation <u>**W**</u>ith <u>**P**</u>artial <u>I</u>solation model

The condensation calculations have been further improved by e.g. Lodders 2003 or Ebel 2006

Ebel, D.S. (2006) Condensation of rocky material in astrophysical environments.

log₁₀ (total pressure, bar)

2000

Equilibrium stability relations of vapor, minerals and silicate liquid as a function of temperature (T) and total pressure (P) in a system with solar bulk composition.

Condensation temperatures are	Element (1)	T _C (K) (2)	Initial Phase {Dissolving Species} (3)	50% T _C (K) (4)	Major Phase(s) or Host(s) (5)
always a	Н	182	H ₂ O ice		
function of	Не	<3	He ice		
	Li		$\{Li_4SiO_4, Li_2SiO_3\}$	1142	Forsterite + enstatite
	Be		$\{BeCa_2Si_2O_7\}$	1452	Melilite
	В	70	$\{CaB_2Si_2O_8\}$	908	Feldspar
- pressure	C	78	$CH_4 \cdot / H_2O$	40	CH_4 ·/ H_2O + CH_4 ice
- ovvaen fugacity	N	131	NH ₃ ·H ₂ O Watariaa ^a	123	NH ₃ ·H ₂ O
	О F	730	CalPO LE	734	Fock + water ice
- thermodynamic	Ne	93	Ne ice	91	Neice
	Na	2.5	{NaAlSi ₂ O ₂ }	958	Feldspar
data used	Mg	1397	Spinel	,,,,,	i orașai
		1354	Forsterite ^b	1336	Forsterite
	A1	1677	Al ₂ O ₃	1653	Hibonite
Condensation	Si	1529	Gehlenite		
		1354	Forsterite ^b	1310	Forsterite + enstatite
temperatures can	Р	1248	Fe ₃ P	1229	Schreibersite
ha aiyan far	S	704	FeS	664	Troilite
be given for	C1	954	Na ₄ [Al ₃ Si ₃ O ₁₂]Cl	948	Sodalite
- minerals (<i>in-out</i>)	Ar	48	Ar·6H ₂ O	47	Ar·6H ₂ O
	K	1650	{KAIS1 ₃ O ₈ }	1006	Feldspar
- elements $(T_{50\%})$	Ca	1659	$CaAI_{12}O_{19}$	1517	Hibonite + genienite
× 50787	5с т:	1502	$\{\mathbf{SC}_2\mathbf{U}_3\}$	1009	Titanata
	V	1,595	$\{VO, V, O_i\}$	1362	Titanate
	Cr		$\{C_r\}$	1296	Feallov
	Mn		{Mn ₂ SiO ₄ , MnSiO ₂ }	1158	Forsterite $+$ enstatite
	Fe	1357°	Fe metal ^c	1334	Fe allov
	Со		{Co}	1352	Fealloy
	Ni		{Ni}	1353	Fealloy
	Cu		{Cu}	1037	Fealloy

Equilibrium Condensation Temperatures for a Solar-System Composition Gas

Concept of the "50% condensation temperature"

Cosmochemical element classification

Condensation behavior of the elements. Short-lived radioactive elements are shown in italics (after Morgan and Anders, 1980).