ISSP meeting - CHARA/SPICA Nice 30/5 to 1/6/2023

S07 : Stellar rotation across the HR diagram with SPICA

A. Domiciano de Souza

Initial list of col : S. Albrecht, A. Claret, A. Gallenne, P. Kervella, A. Meilland, N. Nardetto, M. Rieutord, R. M. Roettenbacher, P. Stee

S07 Rotation: aim

Study stellar rotation in all HR

S07 Rotation: aim

Study stellar rotation in all HR diagram

Rotation impacts evolution:

Evolutionary tracks modified

Rotational mixing brings new H in the core \rightarrow longer time spent on MS + different abundances

Georgy et al. 2013

S07 Rotation: aim

Study stellar rotation in all HR

NGC1846 ; Kamann et al. 2020

S07 Rotation: effects of rotation

• Flattening $\rightarrow R_{eq} > R_{p}$ (centrifugal force)

$$\epsilon \equiv 1 - \frac{R_{\rm p}}{R_{\rm eq}} = \frac{V_{\rm eq}^2 R_{\rm p}}{2GM} = \left(1 + \frac{2GM}{V_{\rm eq}^2 R_{\rm eq}}\right)^{-1}$$

- Gravity darkening (GD)
- Baroclinicity \rightarrow differential rotation & meridional circulation

2016

Rieutord et al.

S07 Rotation: effects of rotation

Gravity darnening (flux of the rotating star becomes dependent on the latitute)

$$F = \sigma T_{
m eff}^4 = C g_{
m eff}$$
 \longrightarrow $T_{
m eff} = \left(rac{C}{\sigma}
ight)^{0.25} g_{
m eff}^{0.25}$ (von Zeipel 1924)

Fig. 2. Effective temperature maps for D = 0.78 (model A in Table 1), $\beta = 0.25$ and different inclinations. The polar (maximum) and equatorial (minimum) effective temperatures are $T_p = 35\,000$ K and $T_{eq} = 25\,100$ K, respectively. Abscissas (y) and ordinates (z) are normalized by the equatorial radius R_{eq} . Note that the projected geometrical deformation increases with higher inclinations but the stellar size in the y direction is constant. Since the local radiative surface flux is defined by $F(\theta) = \sigma T_{eff}^4(\theta)$ this figure gives and idea of the projected brightness changes from pole to equator.

Domiciano de Souza et al. 2002

S07 Rotation: effects of rotation

• Generalized gravity darkening law:

$$T_{
m eff} \propto g_{
m eff}^{eta}$$

- Von Zeipel: $\beta=0.25$ (radiative)
- Lucy: $\beta = 0.08$ (convective)
- Value of β :
 - Estimated from the local conditions in the external layers (radiation+convection).
 - The structure of the external layers depends on the flux that is coming from the interior and not the opposite.
 - Treated as a free parameter.
 - Introduces an unnecessary additional unknown with no physical meaning.

(credits : F. Espinosa-Lara)

S07 Rotation: interferometry

Interferometry is an ideal tool to directly measure rotational flattening and gravity darkening.

Up to now, only a few (<10) fast rotators in total were studied in detail unsing interferometric data.

ISSP S07 **survey**: About 3 to 5 times more targets expected to be observed with similar quality with CHARA/SPICA.

S07 Rotation: selection of targets

Base catalogue from van Belle (2012), who uses the vsini catalogue from Glebocki.

Selected S07 ISSP stars with:

- Angular diameter > ~ 0.5mas (also bright enough for SPICA)
- Dec > -30 deg
- High vsini (>~100 km/s), but low vsini allowed for hot stars (e.g. case of Vega : pole-on)
- Spectral types from O to F to cover the HR diagram of fast-rotators
- Some manual selection to comply with final ISSP requirements (e.g. number of targets)

S07 Rotation: selected targets

101 targets selected (54 to be observed with 25 in P0)

S07 Rotation: selected targets

101 targets selected (54 to be observed with 25 in P0)

∢et_main	vmag	rce_of_v	piname	orognamo	comments	chara	oica_moo	spi	date	riority_p
* alf Lyr	0.03	simbad	domician	S07	HD 172167 / SpType=A0Va / angdiam=3.09 mas / vsini=22.8 km/s	["S1S2E1	IMA			0
* bet Ori	0.18	simbad	domician •	S07	HD 34085 / SpType=B8Iae / angdiam=2.62 mas / vsini=35.3 km/s / possible emission line	["S1S2E1	IMA			1
* alf Aql	0.76	simbad	domician	S07	HD 187642 / SpType=A7Vn / angdiam=3.39 mas / vsini=211.0 km/s	["S1S2E1	IMA			0
* alf Leo	1.36	simbad	domician	S07	HD 87901 / SpType=B8IVn / angdiam=1.30 mas / vsini=294.0 km/s	["S1S2E1	IMA			0
* eta UM▶	1.85	simbad	domician	S07	HD 120315 / SpType=B3V / angdiam=0.75 mas / vsini=158.0 km/s	["S1S2E1	IMA			0
* alf Oph	2.08	simbad	domician	S07	HD 159561 / SpType=A5IVnn / angdiam=1.56 mas / vsini=208.0 km/s	["S1S2E1	IMA			0
* gam Ca)	2.15	simbad	domician	S07	HD 5394 / SpType=B0.5IVpe / angdiam=0.81 mas / vsini=295.0 km/s / possible emission line	["S1S2E1	IMA			1
* bet Cas	2.28	simbad	domician	S07	HD 432 / SpType=F2III / angdiam=1.84 mas / vsini=61.7 km/s	["S1S2E1	IMA			0
* gam U№	2.41	simbad	domician*	S07	HD 103287 / SpType=A0Ve+K2V / angdiam=0.99 mas / vsini=160.0 km/s / possible emission line / probable bin	["S1S2E1	IMA			0
* alf Cep	2.45	simbad	domician	S07	HD 203280 / SpType=A8Vn / angdiam=1.36 mas / vsini=204.0 km/s	["S1S2E1	IMA			0
* zet Oph	2.54	simbad	domician	S07	HD 149757 / SpType=O9.2IVnn / angdiam=0.98 mas / vsini=348.0 km/s	["S1S2E1	IMA			0
* del Leo	2.56	simbad	domician*	S07	HD 97603 / SpType=A5IV(n) / angdiam=1.27 mas / vsini=177.0 km/s	["S1S2E1	IMA			0
* bet Lib	2.61	simbad	domician*	S07	HD 135742 / SpType=B8Vn / angdiam=0.75 mas / vsini=251.0 km/s	["S1S2E1	IMA			0
* bet Eri	2.78	simbad	domician*	S07	HD 33111 / SpType=A3IV / angdiam=1.10 mas / vsini=180.0 km/s	["S1S2E1	IMA			0
* del Crv	2.94	simbad	domician*	S07	HD 108767 / SpType=A0IV(n)kB9 / angdiam=0.77 mas / vsini=205.0 km/s	["S1S2E1	IMA			0
* zet Aql	2.99	simbad	domician*	S07	HD 177724 / SpType=A0IV-Vnn / angdiam=0.77 mas / vsini=316.0 km/s	["S1S2E1	IMA			0
* gam U№	3	simbad	domician*	S07	HD 137422 / SpType=A2III / angdiam=0.91 mas / vsini=167.0 km/s	["S1S2E1	IMA			0
* del Her	3.12	simbad	domician*	S07	HD 156164 / SpType=A1IVn / angdiam=0.86 mas / vsini=260.0 km/s	["S1S2E1	IMA			0
* del UM≯	3.32	simbad	domician*	S07	HD 106591 / SpType=A2Vn / angdiam=0.73 mas / vsini=210.0 km/s	["S1S2E1	IMA			0

S07 Rotation: CHARRON & ESTER models

Domiciano de Souza et al. 2002, 2012

S07 Rotation: interferometric signal

S07 Rotation: interferometric signal

Sargas F3-4I-II

VLTI/PIONIER observations CHARRON model

Sargas F3-4I-II

Domiciano de Souza et al. 2018, A&A

Sargas F3-4I-II

Domiciano de Souza et al. 2018, A&A

1500

1000

30.30+0.09 (°W) W $V_{eq}^{400} = V_{eq}^{100} = V_{eq}^{105.5^{+1.8}_{-1.8}} \, \mathrm{km \, s^{-1}}$ 101 ms 101 60.2+1.7 1400 1200 1000 800 600 400 (°) i 222 PArot 181.8+0.5 50 184.5 183. VI 181.5 \overline{T}_{eff} 6207⁺⁹₋₁₀ K 180.0 6250 (¥) 6225 1³¹⁹ 6200 1000 617 $0.192^{+0.008}$ 0.24 0.20 0.16 183.0 181.5 50 65,80.0 1848115 6200 625 6250 0.16 0.20 0.24 14 18 52 202 200 20 50 \$ 60 $M(M_{\odot})$ i (°) $V_{en} \, ({\rm km \, s^{-1}})$ $R_{\infty}(R_{\infty})$ PAnot (°) $\overline{T}_{\rm eff}$ (K)

Use of bayesian analysis

Sargas

F3-4I-II

Domiciano de Souza et al. 2018, A&A

when possible.

Fitted parameters	β -model	ω -model
Equatorial radius: R_{eq} (R_{\odot})	30.30+0.09	30.30+0.08
Stellar mass: $M(M_{\odot})$	$5.08^{+0.14}_{-0.14}$	5.09+0.13
Equatorial rotation velocity: V_{eq} (km s ⁻¹)	$105.5^{+1.8}_{-1.8}$	$104.0^{+0.9}_{-1.1}$
Inclination angle of rotation-axis: i (°)	$60.2^{+1.7}_{-1.6}$	$61.8^{+0.8}_{-0.9}$
Position angle of rotation-axis ^a : PA _{rot} (°)	$181.8_{-0.3}^{+0.5}$	$182.1_{-0.4}^{+0.5}$
Average effective temperature: \overline{T}_{eff} (K)	6207+9-10	6215 ⁺⁷
Gravity-darkening coefficient: β	$0.192_{-0.007}^{+0.008}$	
Derived parameters	β-model	ω-model
Equatorial angular diameter: $\mathcal{D}_{eq} = 2R_{eq}/d$ (mas)	3.09	3.09
Polar radius: $R_p(R_{\odot})$	25.81	25.92
Polar angular diameter: $\mathcal{O}_{p} = 2R_{p}/d$ (mas)	2.63	2.64
Equatorial-to-polar radii ratio: R_{eq}/R_{p}	1.1741	1.1689
Flattening: $\epsilon = 1 - R_p/R_{eq}$	0.14825	0.14446
Radius of equivalent spherical star with same surface: \overline{R} (R_{\odot})	28.62	28.66
Angular diameter of equivalent spherical: $\overline{O} = 2\overline{R}/d$ (mas)	2.92	2.93
Projected rotation velocity: $V_{eq} \sin i \ (\text{km s}^{-1})$	91.5	91.7
Equatorial and polar T_{eff} : T_{eq} ; T_p (K)	5836; 6740	5841;6770
Equatorial and polar gravities: $\log g_{eq}$; $\log g_{p}$ (dex)	1.995; 2.320	2.003; 2.317
Luminosity: $L(L_{\odot})$; $\log L/L_{\odot}$	1091; 3.038	1100; 3.041
Rotation period and frequency: P_{rot} (day); Ω (rad/day)	14.54; 0.432	14.74; 0.426
Critical rotation rate (angular and linear): Ω/Ω_c ; V_{ea}/V_c	0.852; 0.667	0.845; 0.658
Keplerian orbital rotation rate: $V_{eq}/V_k = \Omega/\Omega_k$	0.590	0.581
Equivalent gravity darkening coefficient: β_{ij}	_	0.204

Use of bayesian analysis when possible.

Sargas

F3-4I-II

Domiciano de Souza et al. 2018, A&A

1.1

.0

8

Call, Fell, Sil Cal, Fel, Scil

645

Cal, Fel, Fell,

650

ٍةٍ 0.9 س

flux

Normalized

0.6

0.5

0.4

Let Feit, Sci. Til Ci, Feit, Feit, Ni, Si Ci, Feit, Feit, Sci, Si Ci, Feit, Feit, Ni, Si Ci, Feit, Feit, Ni, Si Ci, Feit, Feit, Sci, Si Ci, Feit, Feit, Sci, Si Ci, Si C

670

665

Use of additional data (e.g. spectra) when they are available.

Sargas

F3-4I-II

Fig. 3. Comparison between the normalized flux from UVES (black dots with error bars) and from the β -best-fit model (red curve) presented in Table 2. The spectra shown span ~26 nm centered on the H α line, where the main atoms and ions contributing to the strongest absorption lines have been identified. These observations correspond to 257 selected wavelengths, which homogeneously sample the whole relevant spectral range, as shown by the data points. The thin curves correspond to normalized model fluxes for the same β -best-fit model, but where we have fixed T_{eff} to T_{p} (blue) and T_{eq} (green) over the whole photosphere (model without GD, i.e., $\beta = 0$). Clearly the complete best-fit model, with GD, better reproduces the observed spectral lines compared to the simpler model spectra computed with $\beta = 0$.

655

Wavelength λ (nm)

660

Domiciano de Souza et al. 2018, A&A

Altair

VLTI/PIONIER and GRAVITY observations ESTER model

Bouchaud, Domiciano de Souza et al. 2020, A&A

Altair vs Model (M = 1.86 M $_{\odot}$, Z = 0.019, Xc/Xe = 0.96, Ω = 0.74 Ω_{bk} , i = 50.6°, PA = 301.1°)

Bouchaud, Domiciano de Souza et al. 2020, A&A

Altair

A7V

Fig. 12. Surface map of the effective temperature of our best ESTER model (parameters in Table 5). The dashed line marks the equator. The values are in Kelvin.

1.0

0.5

0.0

-0.5

-1.0

y projected (polar radii)

Fig. 13. Monochromatic intensity map of our best ESTER model (parameters in Table 5), at $1.5 \,\mu$ m in the H band. The values are in erg s⁻¹ cm⁻² cm⁻¹ srad⁻¹.

Bouchaud, Domiciano de Souza et al. 2020, A&A

Altair

A7V

Altair

Table 5. Comparison of the fundamental parameters of Altair derived by Monnier et al. (2007) and from our work where we use X = 0.739 from Asplund et al. (2005).

Parameters	Monnier et al. (2007)	This work
i (°)	57.2 ± 1.9	50.65 ± 1.23
PA (°)	298.2 ± 0.8	301.13 ± 0.34
$M(M_{\odot})$	1.791	1.86 ± 0.03
$T_{\rm pole}$ (K)	8450 ± 140	8621
$T_{eq}(\mathbf{K})$	6860 ± 150	6780
$R_{\rm nole}(R_{\odot})$	1.634 ± 0.011	1.565 ± 0.014
$R_{eq}(R_{\odot})$	2.029 ± 0.007	2.008 ± 0.006
$v_{eq} ({\rm km s^{-1}})$	285.5 ± 6	313
$v \sin i (\mathrm{km s^{-1}})$	240	242
$\Omega\left(\Omega_k\right)$	0.695 ± 0.009	0.744 ± 0.010
Z	_	0.019
[M/H]	-0.2	0.19
X _c	_	0.71
ε	0.195 ± 0.002	0.220 ± 0.003
β	0.190 ± 0.012	0.185

Combine with asterosismology

Bouchaud, Domciano et al. 2020, A&A

Parameters		Mesurements
Parameters i (°) PA (°) M (M_{\odot}) T_{pole} (K) T_{eq} (K) R_{pole} (R_{\odot}) R_{eq} (R_{\odot}) v_{eq} (km s ⁻¹) $v \sin i$ (km s ⁻¹) Ω (Ω_k) Z [M/H]	Interferometry Asterosismology Spectroscopy 2D modeling (ESTER) (interior and surface) Stellar evolution	Mesurements 50.65 ± 1.23 301.13 ± 0.34 1.86 ± 0.03 8621 6780 1.565 ± 0.014 2.008 ± 0.006 313 242 0.744 ± 0.010 0.019 0.19
X_{c} ε β		0.71 0.220 ± 0.003 0.185

Altair

A7V

Type spectral d'Altaïr: A7V

Bouchaud, Domiciano de Souza et al. 2020, A&A

S07 Rotation: data analysis strategy

For all stars of the survey

- Bayesian analysis of all stars with CHARRON (A.Domiciano de Souza) with a simple surface intensity model (blackbody + analytical limb-darkening)
 - ω -model (no β parameter) and β -model for well resolved stars (beyond 1st V minimum)
 - Otherwise, only ω -model (no β parameter)
- Include vsini prior constraints and spectral profiles when available

For a few highlight stars (similar to 2020 Altair paper)

- Analysis with ESTER (M.Rieutord) combined with dedicated stellar atmosphere models ⇒ internal and surface rotation, age
- Include spectral and asterosismic data when available

Thank you for your attention

Credits: P. Kervella