The fringe-tracker SPICA-FT

PANNETIER Cyril

Postdoctoral fellow at Observatoire de la Côte d'Azur

30/05/2023

0 Plan

- 1. Why a fringe-tracker ?
- 2. Current work on SPICA-FT
- 3. Fringe-tracking for SPICA-VIS
- 4. Operating mode of SPICA-FT

O A fringe-tracker, what for ?

Optical path delay

O A fringe-tracker, what for ?

Assuring high instantaneous contrast

O A fringe-tracker, what for ?

Cophasing Enabling long exposure

- The six telescopes of CHARA are currently kept in coherence by MIRC-X group-tracker
- We achieved phase-tracking with SPICA-FT last year and we are now constantly improving the software
- We are starting gathering MIRC-X telemetries to assess MIRC-X grouptracker performance before doing the same with SPICA-FT
- The integration of the IO/ABCD is in preparation

August 2022 First cophasing of CHARA

Cophasing of the six telescopes on August 15th 2022 on the star HD3360

Take-home message

- We proved the ability of reducing perturbations down to 100 nm rms.
- We need to reach this level of cophasing on magnitude 7 to 8 in various atmospheric conditions.

30/05/2023

STATE machine

STATE machine

30/05/2023

RELOCK

- Immediately cophases baselines when fringes are found
- Fringe detection: SNR > S_{gd}

RELOCK / SEARCH

SEARCH

- Finds N-1 independent baselines before cophasing the array
- Fringe detection: global maximum detected

10

SEARCH / RELOCK ?

30/05/2023

SEARCH / RELOCK ?

• Should we use the SEARCH state when starting SPICA-FT ?

	RELOCK	SEARCH
PROS	 Cophases baseline as soon as it is found Cophases the array faster 	 Doesn't need a priori SNR thresholds Can't cophase on a secondary lobe Can be used for setting the SNR thresholds
CONS	 Can track on a secondary lobe Needs a predefined SNR threshold 	 Doesn't cophase immediately baselines that have been found Wait several minutes before cophasing More complex algorithm

2 A fringe-tracker for SPICA-VIS

Cophasing for SPICA-VIS

SNR on V² for one spectral channel: V²=0.02, 10mn of integration, R=140

SNR on V² for one spectral channel: V²=0.6, 10mn of integration, R=4400

Original idea of SPICA-FT

Supplying cophasing capabilities to the CHARA array for pushing sensitivity in the visible (SPICA-VIS)

Goal

Assuring $\sigma_{\Delta\Phi} < \lambda/6$ in the visible ($\lambda = 750$ nm) over hundreds of milliseconds

$$\rightarrow V_{loss} \simeq 30\%$$

2 A fringe-tracker for SPICA-VIS

Limiting fringe jumps

00.

Fringe jumps on the baseline E1S1 on August, 15th 2022

Histograms of the measured group-delays on the fifteen baselines

Fringes are blurred at $\lambda_{SI} \neq \lambda_{FT}$

How to reduce this behaviour ?

- GD command computation different from GD integration
- Synchronisation of the fringe-tracker with the observing instrument

2 A fringe-tracker for SPICA-VIS

The objective is to **quantify the performance** regarding several criteria:

- Behaviour regarding the heterogeneity of objects and visibilities:
 - Resolved objects: low magnitude and visibilities
 Resilience of the beststrapping
 - \rightarrow Resilience of the bootstrapping
 - Faint objects: high magnitude and visibilities
 - → Limiting magnitude for performant cophasing
- Relation between atmospheric conditions and fringe-tracking performance (standard deviation, fringe jumps, spectral decorrelation)
- Maximal integration time enabled for SPICA-VIS

Resilience of the fringetracker

1 mas star \rightarrow V = 20% - 75% (H band) for baselines over 110 m ^{V1} (5)²³¹ (5)²³¹ (5)²³¹ (5)

³ SPICA-FT operating mode

A qualified robust and routine cophaser for CHARA

SPICA-FT objectives

- Routine cophaser of CHARA ($\sigma_{OPD} < 125$ nm)
- Using MYSTIC or MIRC-X instruments as fringe-trackers
- Enabling simultaneous RJHK visibility measurements with long exposures !

Thank you for your attention

