

S01 Exoplanet host stars

R. Ligi, T. Boyajian, A. Chiavassa, A. Gallenne, R. M. Roettenbacher, D. Mourard, R. Szabò, M. Wittkowski, T. Guillot, A. Crida, S. Albrecht, S. Borgniet

ISSP Meeting - Nice, May 2023

The characterisation of exoplanetary systems

Mass — Period Distribution

04 May 2023 exoplanetarchive.ipac.caltech.edu

The characterisation of exoplanetary systems

 $V \propto M_p / M_{\star}$

The characterisation of exoplanetary systems

The characterisation of exoplanetary systems

The characterisation of exoplanetary systems

6

- RV
 - We can « only » improve the parameters
 - Still degenerate
- Direct imaging
 - Always need a model
- Transits
 - Can do much better!

Focus on systems with transiting exoplanets

INTERFEROMETRY : $\boldsymbol{\theta}$

P/T³ = (π²G/3) ρ_★ Measure of stellar density ρ_★ (Maxted et al. 2015, Seager & Mallén-Ornelas 2003)

Direct measurement of the stellar mass M_★=(4π/3)R_★³ρ_★ (Ligi et al. 2016) Measure of R_{*} by interferometry within the ISSP survey

Focus on systems with transiting exoplanets

Planet mass [Mearth]

Focus on systems with transiting exoplanets

HD219134

Transiting exoplanets systems

- → Composition of exoplanets
- → Understand the Fulton gap (photo-evaporation)
- → Terrestrial planets with host stars of different metallicities: elemental abundances of the heavier elements correlated between planets and stars?
- → Evolution of exoplanets atmospheres (age) and orbital dynamics.

Other systems

- Obliquity measurement: remove the *sin(i)*
 - Need high spectral resolution (resolve absorption lines → orientation of the stellar spin axis projected on the sky plane)
 - Planetary orbit from Gaia
 - → measure the relative angle between the stellar spin and the planetary angular momentum: the obliquity.
- 51 Eri for imaging
 - More generally, photocenter shift due to spots
- Limb-darkening (2 stars) determination, to compare with LD in transit studies.

Transiting exoplanets systems mainly

• Stellar parameters

Direct:
$$M_{\star} R_{\star} \rho_{\star}$$

Derived: $T_{eff} \log(g) age$
Benchmarks!

• Planetary parameters

Target selection

Transiting exoplanetary systems

- No 100% complete database
- All have their own characteristics (column names...)
- All include mistakes

Target selection The sample

45 stars Priority 0 42 with transiting exoplanets Priority 1 Angular diameter (mas) 2.0 3 detected by direct imaging (for LD and imaging) 1.5 1.0 MagV < 9 $\theta_{\bigstar} > 0.1 \text{ mas}$ 0.5 0.0 LO Number of stars 5 6 6 4 25 80 2.00 Number of stars 2 1.75 60 1.50 1.50 1.25 1.25 30 6 7 8 9 40 Magnitude V of stars DEC 25 stars 52 angular 20 5 Number of 10 0.75 0.0 0 1.0 1.5 2.0 0.5 0.50 Angular diameter -20 0.25 5 150 200 50 100 250 300 350 0 RA 0 1 2 3 Number of exoplanets in the system 13

Observation requirements

Transiting exoplanetary systems

- Mainly diameters: 2x 6 telescopes with calibrated visibilities
- Very good precision required (1%)
 - Small stars → high visibilities
- But in any case, the measurements, even if not very precise (<2%), will be better than what is actually done (i.e. models).

Additional tools and data

For the program

- Parallaxes: distances (Gaia)
- Photometry: F_{bol} for T_{eff}
- Transit +RV data (literature)
- Stellar models (isochrones) (mass comparison, age)
- Planetary models ?
- Gaia astrometry
- Spectra from SPICA

- → already available
- → to be computed in the S01 program
- → already available but need to be checked
- → available

- → availability? (For many stars)
- → check the targets
- → check resolution

Publication strategy

Transiting exoplanetary systems

- Case by case papers (ex. 55 Cnc, HD219134) if a deep analysis is possible
 - Requires the use of planetary interior models
 - Really depends on the SPICA results
- 1 general paper OR include the results in a general SPICA paper at the end of the survey?
 - To be discussed

Thank you

ISSP Meeting - Nice, May 2023