



## S02 / S03 :

## Combining asteroseismology and interferometry : FGK stars in all evolution stages

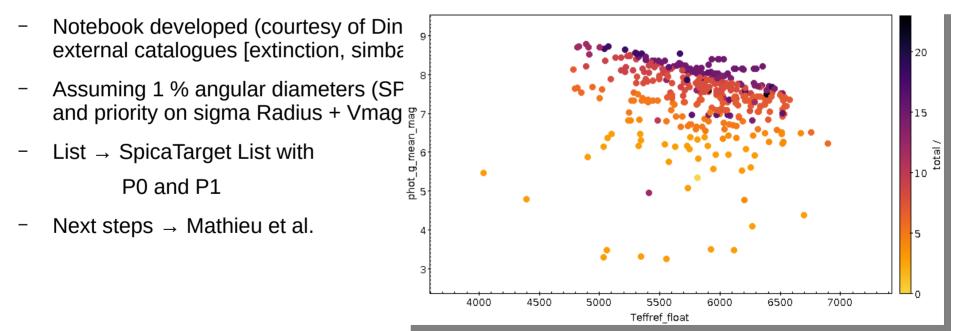
Orlagh Creevey, Sébastien Deheuvels, Mathieu Vrard and S02/S03 SPICA team

- Participants : O. Creevey, R. Ligi, D. B. Palakkatharappil, T. Morel, R. M. Roettenbacher, R. Szabo, T. Boyajian, M. Bazot, N. Nardetto (D. Mourard, K. Belkacem, W. J. Chaplin) + Mathieu Vrard
- Main scientific objectives :
  - S0: (a) calibrating the radius seismic scaling relation covering a range of masses and metallicities (b) model-independent masses using Delta nu and R\_interferometric. Sample : stars with detected global seismic quantities
  - S1: detailed seismic analysis for (a) high precision stellar parameters (b) testing of different physical ingredients in stellar models. *Sample : stars with detected individual frequencies*
  - S2: "Butterfly diagrams" -> needs imaging (this point has not had moved forward much).
     Sample : stars with detected individual frequencies with enough precision to infer differential rotation
- Work :
  - During 1-2 years (see next slide), and last worked on about one year ago with collaborators.

#### Work :

Target list created by the full team comprising northern seismo + PLATO targets. All contributed to this input catalogue. Searched literature for known parameters (R, M, Age), + identified type of target « S0,S1,... » + ... + specific scientific cases in mind

| E  | spicawp2db_v1.4 ☆ ⊡ ⊘<br>File Edit View Insert Format Data Tools Extensions Help <u>Last edit was seconds ago</u> |             |              |                                           |                 |                  |                    |                          |                     |            |             |              |             |              | 🗏 [ 🛓 Sh         |
|----|-------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------------------------------------|-----------------|------------------|--------------------|--------------------------|---------------------|------------|-------------|--------------|-------------|--------------|------------------|
| he |                                                                                                                   | 00% 🕶 \$ %  | .0 .00 123∓  | Default (Ari 10 - B                       | <u>z s A</u>    | • EE -           | ≡ - ± -  २         | • १४ - ⇔ ∄ ⊪ ү           | <b>-</b> Σ <b>-</b> |            |             |              |             |              |                  |
| A1 | - <i>f</i> x ∣ IC                                                                                                 | _string     |              |                                           |                 |                  |                    |                          |                     |            |             |              |             |              |                  |
|    | А                                                                                                                 | В           | С            | D                                         | E               | F                | G                  | н                        | I.                  | J          | к           | L            | м           | N            | 0                |
| 1  | ID_string                                                                                                         | RA_float    | Dec_float    | Bibref_string                             | Seismic_integer | Activity_integer | Activit_type_strin | DataFile_string          | Dnu_float           | eDnu_float | Numax_float | eNumax_float | AmpNu_float | eAmpNu_float | Priority_integer |
| 2  | HIP 58093                                                                                                         | 178.7164989 | -1.45151956: | https://ui.adsabs.harvard.edu/abs/2015    | 0               |                  |                    |                          | 65.7                | 0.7        | 1176        | 58           |             |              |                  |
| 3  | HIP 58191                                                                                                         | 179.0052387 | -1.44221601  | https://ui.adsabs.harvard.edu/abs/2015    | 0               |                  |                    |                          | 51.5                | 1.01       | 890         | 46           |             |              |                  |
| 4  | HIP 55778                                                                                                         | 171.4289355 | 5.74789509   | https://ui.adsabs.harvard.edu/abs/2015    | 0               |                  |                    |                          | 66.6                | 0.8        | 1196        | 72           |             |              |                  |
| 5  | HIP 57676                                                                                                         | 177.435715  | 6.523228357  | https://ui.adsabs.harvard.edu/abs/2015    | 0               |                  |                    |                          | 57.1                | 1.3        | 1000        | 46           |             |              |                  |
| 6  | HD 89345                                                                                                          | 154.6710833 | 10.12903056  | https://arxiv.org/pdf/1805.01860.pdf      | 1               |                  |                    | HD89345_FreqData.txt     | 67                  | 1.87       | 1300        | 58           |             |              | 0                |
| 7  | KIC 6106415                                                                                                       | 285.4153333 | 41.49009167  | https://iopscience.iop.org/article/10.108 | 1               |                  | high-proper moti   | KIC6106415_FreqData.txt  | 10.4                | 0.5        | 2210        | 50           |             |              |                  |
| 8  | KIC 12009504                                                                                                      | 289.4408333 | 50.480075    | https://iopscience.iop.org/article/10.108 | 1               | 2                | rotationaly varial | KIC12009504_FreqData.txt | 88                  | 0.6        | 1833        | 40           |             |              |                  |
| 9  | KIC 10513837                                                                                                      | 280.8679333 | 47.70363456  | https://iopscience.iop.org/article/10.108 | 1               | 1                | red giant branch   | BD+472682_FreqData.txt   | 14.6                | 0.2        | 191         | 7            |             |              |                  |
| 10 | KIC 8006161                                                                                                       | 281.1463301 | 43.83327475  | https://iopscience.iop.org/article/10.108 | 1               |                  | high proper-moti   | HD173701_FreqData.txt    | 149.3               | 0.4        | 3570        | 96           |             |              |                  |
| 11 | KIC 7940546                                                                                                       | 283.0687447 | 43.70994327  | https://iopscience.iop.org/article/10.108 | 1               |                  |                    | HD175226_FreqData.txt    | 58.9                | 0.2        | 1081        | 34           |             |              |                  |
| 12 | KIC 5939450                                                                                                       | 283.5598312 | 41.22579437  | https://iopscience.iop.org/article/10.108 | 1               |                  |                    | HD175576_FreqData.txt    | 30.5                | 2.4        | 605         | 25           |             |              |                  |
| 13 | KIC 9139151                                                                                                       | 284.0886021 | 45.51478694  | https://iopscience.iop.org/article/10.108 | 1               |                  | high proper-moti   | BD+452796_FreqData.txt   | 117.3               | 0.3        | 2695        | 74           |             |              |                  |
| 14 | KIC 9139163                                                                                                       | 284.0921957 | 45.5070442   | https://iopscience.iop.org/article/10.108 | 1               | 2                | eruptive variable  | HD176071_FreqData.txt    | 81.1                | 0.2        | 1685        | 45           |             |              |                  |
| 15 | KIC 10454113                                                                                                      | 284.1526994 | 47.65643422  | https://iopscience.iop.org/article/10.108 | 1               | 2                | rotationally varia | HD176153_FreqData.txt    | 105.1               | 0.3        | 2310        | 68           |             |              |                  |
| 16 | KIC 6106415                                                                                                       | 285.4153258 | 41.49009044  | https://iopscience.iop.org/article/10.108 | 1               |                  | high proper-moti   | HD177153_FreqData.txt    | 104.3               | 0.3        | 2219        | 60           |             |              |                  |
| 17 | KIC 9206432                                                                                                       | 285.9380663 | 45.60838577  | https://iopscience.iop.org/article/10.108 | 1               |                  |                    | HD177723_FreqData.txt    | 84.7                | 0.3        | 1859        | 50           |             |              |                  |
| 18 | KIC 5774694                                                                                                       | 286.0682393 | 41 00317867  | https://ionscience.ion.org/article/10.108 | 1               |                  |                    | HD177780 FreeData txt    | 140.2               | 4          | 3442        | 274          |             |              |                  |

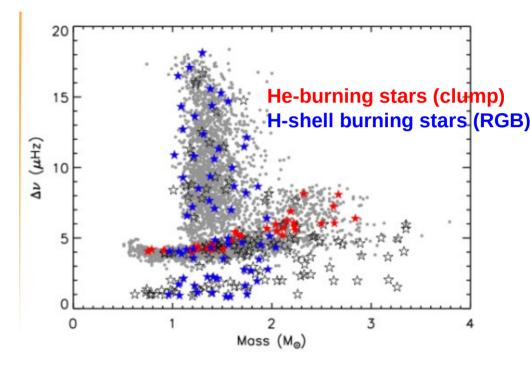

Work :

- Target list created by the full team comprising northern seismo + PLATO targets. All contributed to this input catalogue. Searched literature for known parameters (R, M, Age), + identified type of target « S0,S1,... » + ... + specific scientific cases in mind
- Notebook developed (courtesy of Dinil's expertise) to crossmatch targets with several external catalogues [extinction, simbad, gaia, ...]
- Assuming 1 % angular diameters (SPICA criteria) → calculate sigma Radius. Selection and priority on sigma Radius + Vmag + declination + coverage HR diagram

4

Work :

Target list created by the full team comprising northern seismo + PLATO targets. All contributed to this input catalogue. Searched literature for known parameters (R, M, Age), + identified type of target « S0,S1,... » + ... + specific scientific cases in mind



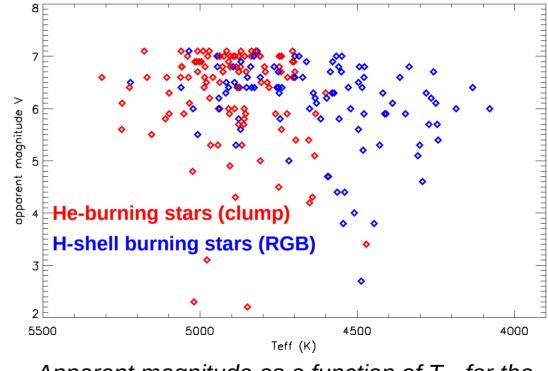

### S03: astero+interfero, subgiants and red giants

-Subgiants and red giants with excellent seismic data and large enough predicted angular diameter

-236 stars in *Kepler* and CoRoT data that corresponds to those criteriums

-60 P0 targets selected following evolutionary stages, masses and  $\Delta\nu$ 




 $\Delta \nu$ -Mass plane for P0 red giants and red clump targets (courtesy of Romina Ibañez-Bustos)

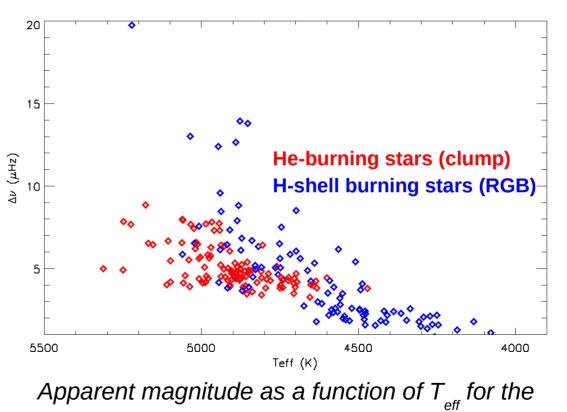
## Sample completion with TESS data

-New red giant sample from the TESS bright star sample (Hon et al., 2022) Selected with V<8,  $\theta$ >0.2,  $\delta$ >-20°

-211 red giant targets with measured seismic quantities ( $\Delta\nu$ ,  $\nu_{max}$ )

-Next step: modify the P0 sample taking these new data into account




Apparent magnitude as a function of  $T_{eff}$  for the selected 211 stars

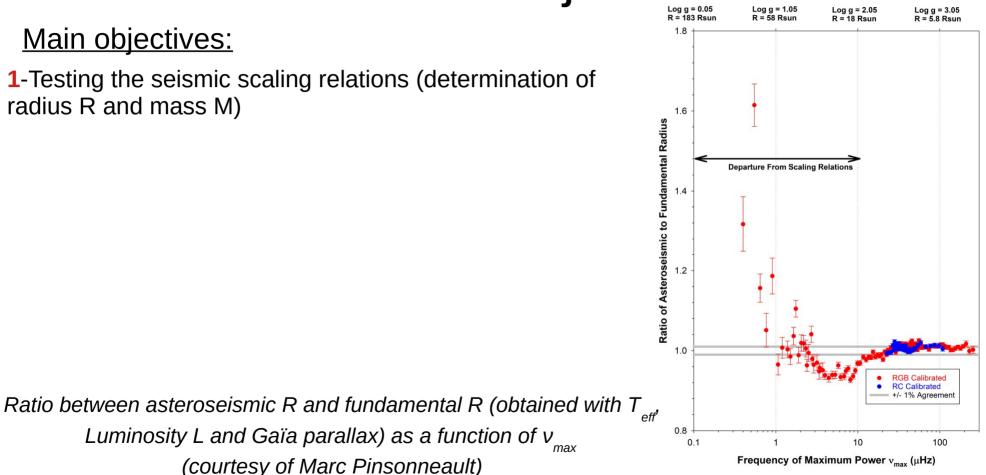
## Sample completion with TESS data

-New red giant sample from the TESS bright star sample (Hon et al., 2022) Selected with V<8,  $\theta$ >0.2,  $\delta$ >-20°

-211 red giant targets with measured seismic quantities ( $\Delta \nu$ ,  $\nu_{max}$ )

-Next step: modify the P0 sample taking these new data into account



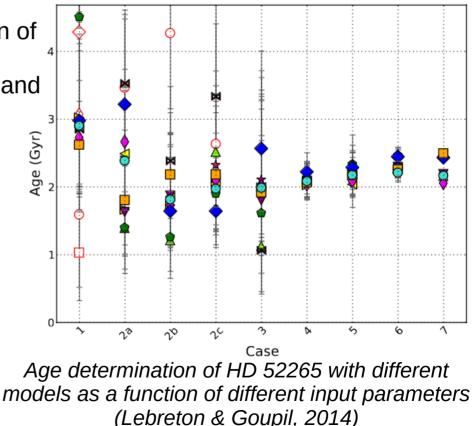

selected 211 stars

### Main objectives:

**1**-Testing the seismic scaling relations (determination of radius R and mass M)

Luminosity L and Gaïa parallax) as a function of v

(courtesy of Marc Pinsonneault)




S02/S03 SPICA team, 1<sup>st</sup> SPICA/ISSP Science Meeting, Nice, May 31<sup>st</sup>, 2023

max

### Main objectives:

1-Testing the seismic scaling relations (determination of radius R and mass M)
2-Obtaining more precise and accurate ages with R and models



### Main objectives:

1-Testing the seismic scaling relations (determination of radius R and mass M)
2-Obtaining more precise and accurate ages with R and models

### Additional objectives:

**3**-Obtaining more precise and accurate masses (with  $\Delta v$  and interferometric R)

11

### Main objectives:

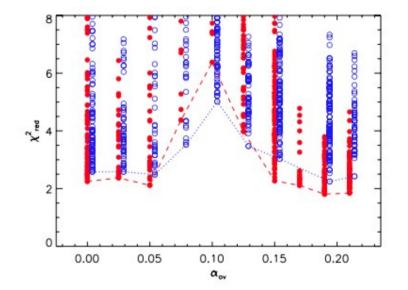
1-Testing the seismic scaling relations (determination of radius R and mass M)2-Obtaining more precise and accurate ages with R and

models

### Additional objectives:

3-Obtaining more precise and accurate masses (with Δv and interferometric R)
4-Obtaining the extinction on the stellar line of sight

12


### Main objectives:

**1**-Testing the seismic scaling relations (determination of radius R and mass M)

2-Obtaining more precise and accurate ages with R and models

### Additional objectives:

3-Obtaining more precise and accurate masses (with Δv and interferometric R)
4-Obtaining the extinction on the stellar line of sight
5-Finding the extent of convective cores in sub-giant stars



Deheuvels & Michel (2011)

### Main objectives:

**1**-Testing the seismic scaling relations (determination of radius R and mass M)

2-Obtaining more precise and accurate ages with R and models

### Additional objectives:

3-Obtaining more precise and accurate masses (with Δv and interferometric R)
4-Obtaining the extinction on the stellar line of sight
5-Finding the extent of convective cores in sub-giant stars
6-Detailed analysis of a few selected P0 stars (PLATO benchmark stars, need of independant R)

### Main objectives:

**1**-Testing the seismic scaling relations (determination of radius R and mass M)

2-Obtaining more precise and accurate ages with R and models

### Additional objectives:

3-Obtaining more precise and accurate masses (with Δv and interferometric R)
4-Obtaining the extinction on the stellar line of sight
5-Finding the extent of convective cores in sub-giant stars
6-Detailed analysis of a few selected P0 stars (PLATO benchmark stars, need of independant R)

### Project completion steps :

Specific objectives (3,4,5,6) can begin as soon as the first observations will be available

Objective **1** is possible to achieve if we obtain data for a representative sample of stars in  $\Delta v$  and M space

Objective **2** needs thorough precise modelisation and is therefore a more long-term objective to be completed during the 3 years of the project

## Important discussion points

-No specific aspects to consider for the observations

-For data analysis, one specific point that needs to be adressed: **modelisation** -What type of models ? Codes ?

- -Use of code or a grid ?
- -Several codes or one main ?
- -Which entree parameters do we need ?

-For publications : focus on publications that concerns global data analysis (point 1,2) Also possibility to publish on specific star work, not necessary led by S02/S03 PI

-Publication of an observation catalog

## Conclusion

-340 S02 targets and 446 S03 targets, 128 P0 targets among them

-An improvement of the S03 P0 sample is ongoing

-Additional objectives can be achieved with a small target sample However, testing seismic scaling relations and improving the stellar age determination will necessitate a more important observation sample

-The most important technical difficulty will be to perform appropriate modelisation for age determination and individual target analysis

-The publication of an observation catalog is a necessity