The SPICA Database and Associated Tools (before observations)

David Salabert, Denis Mourard, Nicolas Nardetto

in collaboration with : Guillaume Mella et Laurent Bourgès @JMMC and Karine Perraut @IPAG

The SPICA database so far...

- The SPICA-DB contains the list of targets of the ISSP survey,
- The PIs of each program provided their list of targets :
 - **S01** : The study of exoplanet host stars (40)
 - **S02 + S03**: Combining asteroseismology and interferometry (330 + 227)
 - S04 : Calibration of new surface brightness colour relations (868)
 - **S05** : Limb darkening across the HR diagram (812)
 - S06 : Stellar masses and binary stars (35)
 - **S07** : Stellar rotation across the HR diagram (97)
 - S08 : Winds and environments (102)

<u>Total number of targets = 2511</u>

- It was created using the API *Catalog* from the *JMMC* and can be consulted through TAP protocol.
- About 1000 of these targets will be observed during the 3-year survey.
- The SPICA database will evolve with the addition of new targets (survey + open-time) using the API Catalog.

Softwares developed for the ISSP Survey

- <u>Night Scheduler Software</u> (NSS)
 - To prepare the observations along with

aspr ind to send the Observing Blocks to CHARA with a2p2.

- (Observations + EndOfNight script)
- Data Reduction Software (DRS) [see Philippe's talk]
 - From the raw images to the L1 data
- **Quality Check Software** (QCS)
 - To calibrate the L1 data to the L2 data
 - Estimate the transfer function (CAL-SCI-CAL)
 - Perform the fit of simple models: uniform disk, gaussian (environment), fast rotator and binary system
 - Return fitting results (figures and statistics) to help to flag any activity

• Data Feeding and Querying Software (DFQS)

- To consult the observations and validate them
- To add new targets in the SPICA database
- To follow the evolution of the ISSP survey: figures, histograms, statistics...
- All the tools are developed in All the tools are developed i

Mount Wilson Observatory 05/30/2023

Demo:

How to prepare your observations with the NSS + Aspro2 + A2p2

- **NSS** (night of 2023-05-30) :
 - Selection of TARGETS
 - Selection of PRIMARY CALIBRATORS + SECONDARY CALIBRATORS
 - Log (to be moved/included in the DFQS)
- Send selection to Aspro2 :
 - Notion of group/color : priority0, priority1, calprim, and calsec
 - Geometrical models in Aspro2 are provided by the SPICA catalog
 - Targets notes (+ extra infos) from the SPICA-DB catalog
 - New tab « Targets »
- Send OB to Chara with A2p2
- (Observations) + (Script EndOfNight)

Communication A2p2 → CHARA

Data Flow and Associated Tools (after observations)

David Salabert, Denis Mourard, Nicolas Nardetto

in collaboration with : Guillaume Mella et Laurent Bourgès @JMMC and Karine Perraut @IPAG

<u>Step 1</u> : Raw data saved on the **Spica-Science** server@CHARA **mv** /DATA/IMG/SPICA.2023-05-30*.fits => /DATA/IMG/2023-05-30/

<u>Step 2</u> : Raw data transfered from **Spica-Science** to **Spica-Pipeline** server@CHARA rsync /DATA/IMG/2023-05-30/ => /DATA/RawData/2023-05-30/

<u>Step 3</u> : The **DRS** creates the L1 data (in RawOifits, contains uncalibrated V², CP) /DATA/RawOifits/2023-05-30/

<u>Step 4</u> : The **QCS** creates the L2 calibrated data (in Results, contains calibrated V², CP + Transfer functions + Ancillary files : figures & csv files) /DATA/Results/2023-05-30/

rsync spicavis.oca.eu:/DATA/RawOifits/ & /DATA/Results/

<u>Step 5</u> : Transfer the L1 and L2 data from CHARA to Nice (**spica-vis** server) /DATA/RawOifits/2023-05-30/ and /DATA/Results/2023-05-30/

Step 6 : Updating the SPICA database@OCA and feeding JM////C tools :

UNIVERSITÉ CÔTE D'AZUR

JMMC ObsPortal

QCS : Transfer functions

• Transfer function :

$$TF = \frac{V_{cal}}{V_{theo}^2}$$

- - 2

- For each given instrumental configuration : DIT, gain, spectral resolution, FT status, nb_tel, ...
- At each base and observed wavelength
- Weighted linear regression of the closest calibrators around a science target (CAL-SCI-CAL)
- The SCI V² extrapolated
- The bad calibrators are flagged and removed from the TF.

QCS : Activity flags

- Apply simple models on the $\mathsf{V^2}$ and CP :
 - An uniform disk
 - A disk + a Gaussian == a star with wind and/or environment
 - An *ellipse* == a fast rotator
 - A binary system (with CANDID)
- Provides indication of the prefered model : figures + statistics
- Allow the PI to evaluate if a target deviates from its supposed model and to validate it or not through the DFQS.

Demo:

How to consult and validate your observations

- (Observations) + (Script EndOfNight : **DRS** + **QCS**)
- Consultation of SPICA Database by the PIs with the **DFQS** (and links to OiDB by interop)
 - Data protection : restricted access to the data for the PIs, cols, and delegations
 - Validation of the observations and update of the « completion_rate »
 - Modification of the PI priorities
 - Possibility to add new targets with validation from administrators
- Observations accessible on OiDB-beta (L1 + L2 data) : collections and granules
 - Restricted access for the TARGETS (with a release date)
 - Public access for the CALIBRATORS
- Can send data from OiDB to Oifits_Explorer

Operational and Scientific Catalogs

- **Operational catalog:** this is the SPICA-DB catalog already existing
 - With all the infos needed to perform the survey (NSS, Aspro2, messages_CHARA, DFQS, ...)
 - Easy to update the database and add targets

• Scientific catalog:

- One for each scientific program or a common one with wrappers to extract sub-section of the catalog for each PI?
- Each scientific program needs to define the list of the different parameters to be included.
- Some parameters might be in common with other programs: how is the information shared between PIs to have uniform sets and sources of parameters ?
- The querying and feeding of these catalogs : do we a need a GUI or from the terminal ?
- Are these scientific catalogs public ? Can all the PIs have access to these information ? If no, we need to have one catalog per PI.
- Example of S05 (the binary_system program) :

name	RAJ2000(deg)	DEJ2000(deg)	Vmag()	P(d)	HJD0	fluxratio()	q()	sepG(mas)	angdiameterG.P(mas)	angdiameterG.S(mas)	ecc()	inc(deg)	omega(deg)	OmegaN(deg)	Teff.P(K)	Teff.S(K)	d(pc)	SpType.P	SpType.S	Comment
HD 434	2.25	28.25	6.47	34.26241	L 54175.643	0.479	0.815	2.211	0.180	0.164	0.32		135.01				113.5	A4Vm		HD 434; SB*
HD 1383	4.57	61.73	7.63	20.28184	51414.8	1.000	1.017	0.165	0.054	0.054	0.116		178				2644.8	BOII	BOII	HD 1383; SB*

Softwares developed for the ISSP Survey

- In order to improve these tools, we need from you :
 - Inputs and ideas for improvements
 - Missing functionalities
 - Bug reports
 - How ? Google doc ?
- Future add-on: a python code to edit the log of observations of each night
 - This log will be included in the EndOfNight script
 - And will be associated to the data and accessible with the DFQS