Calibration of new surface brightness colour relations

Romina Ibañez Bustos, Denis Mourard, Nicolas Nardetto, the ISSP team (https://lagrange.oca.eu/fr/team-erc-issp) and co-I from the SPICA Science Team (https://lagrange.oca.eu/fr/spica-team)

The state of the second s

CHARA/SPICA ISSP Project

S01: Exoplanet host stars

S02 & S03: Asteroseismic stars

S04: Surface brightness - color relation (SBCR)

S05: Limb darkening

S06: Binaries

S07: Rotation

S08: Winds & environments

CHARA/SPICA ISSP Project S04: Surface brightness - color relation (SBCR)

CHARA/SPICA ISSP Project S04: Surface brightness - color relation (SBCR)

Why perform a new calibration of the SBC relation?

nterferometric Survey

of Stellar Parameter

Main goals...

868 stars with $S\rho T$ = [B0 - M3] and $S\rho C$ = [V, IV, >III]

P0

868 stars with $S\rho T = [B0 - M3]$ and $S\rho C = [V, IV, >III]$

P0P1

324 stars to be observed in the next semesters

868 stars with $S\rho T = [B0 - M3]$ and $S\rho C = [V, IV, >III]$

324 stars to be observed in the next semesters

868 stars with $S\rho T = [B0 - M3]$ and $S\rho C = [V, IV, >III]$

324 stars to be observed in the next semesters

868 stars with $S\rho T$ = [B0 - M3] and $S\rho C$ = [V, IV, >III]

868 stars with $S\rho T$ = [B0 - M3] and $S\rho C$ = [V, IV, >III]

324 stars to be observed in the next semesters

At least 1 spectrum...

868 stars with $S\rho T$ = [B0 - M3] and $S\rho C$ = [V, IV, >III]

324 stars to be observed in the next semesters

At least 1 spectrum...

target_	main_id HAF	RPS H	ARPS_SNR I	FEROS F	EROS_SNR				SOPHIE_SNR ELOD	IE ELODIE_SNR
tet Le HD 175	0 40 5726 14	16 [6 44 [3	1.9, 177.1021739130435, 294.3] 15.6, 172.2583333333333333, 399.1] 0.1, 139.3444444444443, 424.2]	10 [4 14 [1	45.4, 70.02, 85 104.7, 141.3, 1 314.1, 314.1, 3	Instrument	Resolution	Wavelength coverage	[21.7839, 252.64102571428572, 375.) 15 [14.2645, 128.03236176470588, 182.3 1 [43.9422, 121.16357272727272, 172.5 0]	[42.2, 211.779999999999994, 489. [121.8, 121.8, 121.8]
HD 112	974 0 810 0	0 0	(, 0, 0] (, 0, 0]	0 [0	0, 0, 0] 0, 0, 0]	instrument		(nm)	[28.9376, 47.7824242424242424, 74.38) 0 [14.333, 133.9949606060606, 214.53) 0	0
35 V HD 130	ul 0 0396 30	0 [0	0, 0, 0] (6.9, 134.4638888888888887, 189.8]	10 [1 53 [0	185.6, 235.630 69.1, 192.8622		λ/Δλ	(mn)	[106.723, 257.6153870967742, 364.8) 0 [44.9363, 53.2054000000001, 100.3) 1 [43.9363, 53.20540000000001, 100.3] 1	0 [74.5, 74.5, 74.5]
HD 1/3 HD 169	925 0		i, 0, 0] i, 0, 0] i, 0, 0]		0, 0, 0] 0, 0, 0] 0, 0, 0]	HARPS	115 000	378 - 691	42.8365, 69.73016666666668, 95.343 2 [6.21494, 52.33227724137932, 82.333 4 [224.16, 306.38592857142856, 367.93 1	[21.5, 63.2, 104.9] [20.8, 71.324999999999999, 100.6] [184.7, 184.7, 184.7]
* 603 C		0 [0 0] 0	i, 0, 0] i, 0, 0]	0 [0	0, 0, 0] 81.3, 102.7250	FEROS	48 000	350 - 920	186.162, 248.4404400000002, 285.) 11 4.0942, 26.013507727272724, 99.37 10	[94.6, 186.7909090909091, 323.9] [36.3, 106.84, 186.3]
eps N	fon B 41	0 0 0 10 10 10 10 10 10 10 10 10 10 10 1	1, 0, 0] 1.8, 202.00292682926832, 262.3] 10.9, 90.9, 90.9]	2 5	0, 0, 0] 95.5, 98.15, 10 0, 0, 0]	UVES	80 000 - 110 000	300 - 1100	[191.088, 532.8485555555557, 743.6# 14 [44.777, 58.8459294117647, 90.992] 1 [72.1409, 209.89986875, 294.882] 3	[82.6, 200.56428571428572, 378+ [318.8, 318.8, 318.8] [52.7, 97.6333333333333333, 136.1]
HD 37 HD 28	510 84 343 1	84 [5 13 [2	.1, 327.94999999999993, 604.9] 0.6, 57.130769230769225, 158.8]	38 [2 11 [6	2.9, 123.94736 6.0, 28.863636	XSHOOTER	4000 - 17 000	300 - 2500	[3.77868, 62.49979142857143, 103.0) 0 [50.799, 97.35816153846153, 126.58] 8	0 [42.6, 61.5375, 135.2]
HD 28	et 934 620 0 947 1		0.1, 235.25783106733755, 586.6] 0, 0, 0] 05.9, 105.9, 105.91	578 0	2.8, 201.61141 0, 0, 0] 61.0, 107.5, 37	ESPRESSO	70,000 - 140,000 - 190,000	380 788	263.874, 280.18424999999996, 331.9 2 45.523, 93.41914444444444, 122.400 0 93.3335, 190.07861111111112, 265.8 14	[10.3, 43.44999999999999996, 76.6] 0 [47, 7, 91 57142857142857, 139 0]
21 L HD 187	0 637 0	0 [0 0 [0	1, 0, 0] 1, 0, 0]	0 [0	0, 0, 0] 0, 0, 0]	CDIDES	16 000 - 140 000 - 190 000	050 5200	22.2766, 305.9796222222225, 393.4 6 39.023, 51.8065111111112, 71.7723 0	[134.3, 274.75, 437.0] 0
HD 199 HD 216 HD 72	0305 0 0899 14 060 9	0 0 40 2	0, 0, 0] 11.3, 58.97428571428571, 96.3] 0.6, 81.875, 241.81	5 3	0, 0, 0] 31.3, 42.38, 52 1.6, 90,6875, 3	CRIKES	40 000 - 92 000	950 - 5500	52.7645, 93.354344444444445, 113.9) 5 [44.9792, 109.624733333333332, 147.* 6 [89.7129, 148.56827142857145, 184.* 5	[60.2, 71.32000000000001, 81.3] [30.0, 52.76666666666666666, 65.9] [65.5, 186.98, 299.9]
HD 76	349 0	0 [0	0, 0, 0] 18.2, 90.407291666666667, 185.4]	0 [0	0, 0, 0] 0, 0, 0]	SOPHIE	40 000 - 75 000	387 - 694	36.7705, 50.81534285714286, 79.72* 0 52.2236, 169.81861666666668, 288.* 2	0
* psi Se HD 16	160 32	64 [4 25 [6	9.8, 137.30243902439022, 303.5] 9, 134.84, 366.1]	69 5	5.2, 141.36956 26.0, 100.1833	ELODIE	42 000	385 - 680	[32.2117, 64.98586666666668, 132.2* 4 [3.80857, 134.544474, 247.278] 2	[54.8, 138.975, 179.3] [92.6, 111.85, 131.1]
HD 119	768 0 850 3	0 10 35 [1	0.1, 63.58285714285716, 107.7]	51 [9	9.9, 116.86470	20			[55,8549, 63,1692/5, 74,0672] 3 [52,6081, 65,914225, 83,0376] 3	[68.3, 107.0, 130.5] [21.2, 62.4666666666666666, 119.6]
HD 90	594 6	6 1	41.3 166 716666666666667 235 31	7 1	13 2 89 8428571	4285714 338 41 15 15 0 13 6733333332	33336.39.21 0 10.0.01 0	0 0 0 0	4 [41 5908 58 14165 68 0976] 1	[21.2, 02.400000000000000000000000000000000000
HD 28	780 0	o io	0. 01	0 0	0, 0, 01	0 [0, 0, 0]	0 10.0.01 0	0, 0, 01 0 10, 0, 01	3 [264.178.293.07433333333333.331.3] 0	0

SNR = [min, mean, max]

How to proceed?

868 stars with $S\rho T$ = [B0 - M3] and $S\rho C$ = [V, IV, >III]

of Stellar Parameter

324 stars to be observed in the next semesters

Instrument	Resolution $\lambda/\Delta\lambda$	Wavelength coverage (nm)
HARPS	115 000	378 - 691
FEROS	48 000	350 - 920
UVES	80 000 - 110 000	300 - 1100
XSHOOTER	4000 - 17 000	300 - 2500
ESPRESSO	70 000 - 140 000 - 190 000	380 - 788
CRIRES	46 000 - 92 000	950 - 5300
SOPHIE	40 000 - 75 000	387 - 694
ELODIE	42 000	385 - 680

HD 225213 SpT: M2V

7000

How to proceed?

868 stars with $S\rho T = [B0 - M3]$ and $S\rho C = [V, IV, >III]$ 10e-6 Photometry extracted from VizieŔ 10e-10e-8 - un 10e-9 ź : . . • : 10e-11 10e-12 Normalized Flux Normalized Flux 1.0 10e-13 10 100 0.1 Wavelength (µm) 0.2 0.0 4000 4500 5000 5500 6000 6500 7000

Wavelength [Å]

nterferometric Survey

324 stars to be observed in the next semesters

10e-8

10e-

10e-11

10e-12

10e-13

0.1

F(λ) (erg.s⁻¹.cm⁻².μm⁻¹)

3.0

2.5

0.5

0.0

Wavelength [Å]

OBSERVATOIRE DE LA CÔTE D'AZUR UNIVERSITÉ CÔTE D'AZUR

How to follow the execution of the programme?

INTERFEROMETRY: θ

 $F_v = \alpha + \beta (V - K)$

- For late-type stars

based on JMDC and

classes (Salsi+19). - For <u>early-type</u> stars

- Theoretical study

(Salsi+22).

$F_v = 4.2207 - 0.1 m_{vo} - 0.5 \log \theta$

324 stars to be observed in the next semesters

"324" ISSP S04 stars

How to follow the execution of the programme?

324 stars to be observed in the next semesters

"324" ISSP S04 stars

How to follow the execution of the programme?

324 stars to be observed in the next semesters

Publications of the results

