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Goal

Understanding general properties of inertial particles
advected by fluid flows from a dynamical systems point of view

Outline

Lecture 1:

* Model equations for inertial particles & introductory overview of
dynamical systems ideas and tools

Lecture 2:

¢ Application of dynamical systems ideas and tools (lecture 1) to
inertial particles for characterizing clustering



Two Kinds of particles

Tracers= same as fluid elements
e same density of the flud Pp — Pf

e point-like dX
e same velocity of the underlying dt v(t) = u(X(),?)
fluid velocity

Inertial particles= mass impurities of finite SiZN
e density different from that of the fluid p,, = 1 f % Dy T
e finite size '

N

e friction (Stokes) and other forces should be included
e shape may be important (we assume spherical shape) s
e velocity mismatch with that of the fluid

dX

Simplified dynamics under  dt
some assumptions % F(V. u(X().8).a,v,...)
al



Relevance of inertial particles

Finite-size & mass impurities in fluid flows



..and Pyroclasts




Particle Dynamics -

ingle particle /—\f
gaﬂiclpe: :igild sphere, radius a, mass m; %////////

////A Vo
passive => no feedback on the fluid

e

Fluid around the particle: Stokes flow
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Maxey & Riley (1983)
Auton et al (1988)



Simplified dynamics

dX
@ Y
dv Du(X,t) u(X,t)-V
dt Dt T T +(1-B)g
Stokes ti il
okes time 7, = ——
P 3u3
Fastest fluid time scale St - E
L
Tg =Ty = ﬁRe_l/2 Lt

two adimensional

control parameters St & f3

Stokes Number

As a further simplification we will ignore gravity

prescibed fluid velocity field
/ (e.q. from Navier Stokes or random)

o
Be)
O
£
(\))
i -
-+—
[T
(o]
~
=
RS
G
>

Validity of the model
0] 1 3

Density contrast
9P f

 pr+20




Starting point of this lecture

Tracers

dX

= = u(X(t)t)

Inertial particles

dX

— — V

dt

L '3Du(X’t) +'U'(X,t)—V
d " Dt =

Let’s forget that we are studying particles moving

in a fluid! What do we know about a generic system

of nonlinear ordinary differential equations?

dax
T g(x)

= (1,85, . - - , Tt}

X
g — (91792>°°°79d)



Dynamical systems

-

U A (0.0, - walt)

°- ' der
. E = F (33) Autonomous ODE
g = folar(t).za(t), - za(t))

ﬂ d+l
dx

® . - f(x,t) non-autnonomous ODE w41 =t e fgi1 =1

@ x(++1)=Ff(x(1)) Maps (discrete time)

O BV +0-Vo=—"VpivAv+f, V-v=0 PDEs d->x
p



Examples of ODEs

dX

Q@ =EUkaX Lorenz model

% — = XE 4 r K =¥ d=3

iz .

= = XY -bZ.

ag; dH

dat - ap; From Mechanics

dp; OH (Hamiltonian systems)
l — - c—

dt  ~  ag izl,N => d=2N

with

Xi =0; XitN = P X=1(q,p) dax B
OH OH :> i f(x)

f,; = 8—'[)z f'i+N = _8—(]2 f = (VpH,—VqH)



Some nomenclature

The space spanned by the system variables is called phase space

Exs: N particles I' = {q1,...,gN;P1, ..., PN} (2xd)xN dimensions

Lorenz model () = { X, Y Z } 3 dimensions

For tracers the phase space coincides with the real space
For inertial particles the phase space accounts for both

particle’s position and velocity
A point in the phase space

Q identifies the system state

A trajectory is the time
’ * succession of points in the

S phase space

We can distinguish two type of dynamics in phase-space



Conservative & dissipative

Given a set of initial conditions distributed with a given density Q)
Q

Given © = f how does p(x,t) evolve?

Op+V - (fp)=0p+ f-Vp+ =0

Continuity equation ensuring / deplz,t) =1
2

Conservative dynamical systems (Liouville theorem)

Density is conserved along the flow as in incompressible
V ' f = () fluids ==>phase space volumes are conserved

Dissipative dynamical systems

Volumes are exponentially contracted as the integral of
V ) .f < 0 the density is constant => density has to grow somewhere




Examples of dissipative systems

The harmonic pendulum with friction

1111
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D) IR
DOLNDNILDID =

Phase-space volumes are v v

exponentially contracted
to the point (x,v)=(0,0) time > ®
X X

which is an attractor
for the dynamics

The existence of an attractor (set of dimension smaller than that
of the phase space where the motions take place) is a generic
feature of dissipative dynamical systems



Lorenz model

% = —oX + oY
dY
r3 =-XZ+r X-Y
dZ
— =XY —-bZ.
dt
8 _ —o o 0
f'l, = I[-JZ] (w) Sfdblllfy Mafl"lx L= (r-2Z) -1-X
aCIIj
Y X -b
v.F=aig +0‘Z/‘z’t’+0@z‘(’5 ~Tr(L)= (e +b+1)<0| b, 7, o positive

attractors can be strange objects



Inertial particles have a dissipative dynamics

x
dt B 3
v _ L Du(X.t) u(X.)-V I = (Vspu@rusy
d¢ " Dt -
dfi
a—aj; = Lij(x) T, = O ]I]I
o o
d
V' f=Tr{l)=——<(
Tp

Uniform contraction in phase space
as in Lorenz model



Examples of conservative systems

aa; aH Hamiltonian systems are conservative, but
G = the reverse is no+ true

dt apl 2

ap; ~ dH \va 0% ord =0

Nonlinear pendulum
1

H(,6) = §mL292 +mgL(1 - cos )
é—l—%sin@zﬂ
=6 g = p
26T = —Yaing
g P= [

Phase space

In conservative systems there are no attractors




Tracers

Incompressible flows: conservative X =u(X,t) V- -u =

Compressible flows: dissipative X =u(X,t) WV .-u <0

E.g. fracers on the surface of a
3d incompressible flows
visualization of an attractor

John R Cressman', Jahanshah Davoudiz, Walter | (?-oldburgl
and Jorg Schumacher



Basic questions

dx

E:f@)

¢ Given the initial condition x(0), when does exists
a solution? I.e. which properties f(x) must
satisfy?

* When solutions exist, which type of solutions are
possible and what are their properties?



Theorem of existence and uniqueness

dcc — f ( ) T c R with x(0) given

if fis continuous with the Lipschitz condition
(essentially if f is differentiable)

1f(x) = f(y)l| < K|z -y

The solution exists and is unique

Counterexample

d—x — 3 21/3  Non- -Lipschitz in x=0
it~ 2"
with x(0)=0 two solutions z(t) =0 & x(t) = $3/2




Which kind of solutions?

In dissipative systems motions converge onto an attractor
and can be regular or irregular

Attracting fixed point

nnn
§ \{ ‘J \1/\‘} | (pendulum with friction)
S ||
(o)) VL
&) A "'l‘lliwl'l{

L | .
A .1 ‘I.H'f l ”,‘| Limit cycle
' A ', (asymptotically periodic)
AR (Van der Pool oscillator)

S
S Strange Attractors
o
v (Lorenz model)
=

Different kind of motion can be present in the same system
changing the parameters



Strange attractors

Typically, the dynamics on the strange attractor is ergodic

averages of observables do not depend on the initial conditions
(difficult to prove!)



Strange attractors

Have complex geometries

Non-Smooth geometries

Self-similarity

The points of the trajectory distribute in
a very singular way

These geometries can be analyzed
using tools and concepts from
(multi-)fractal objects



Fractality is a generic feature

Of the strange attfractors
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Which kind of solutions?

In conservative systems motions can take place in all the
avalaible phase space and can be regular or irregular.

Often coexistence of regular and irregular motions in

different reglons dependlng on the initial condition (non-ergodic)

. The onset of the mixed regime can be
\_\\\ understood through KAM theorem

In turbulence, tracers, which are
conservative, have irregular motions
for essentially all initial conditions
Y and they visit all the avalaible

9% space filling it uniformly

& (ergodicity & mixing hold)

Irregular Regular



Sensitive dependence on initial conditions

In both dissipative and conservative systems, irregular
trajectories display sensitive dependence on initial conditions
which is the most distinguishing feature of chaos

20 | |

10°
10 | e
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3 >
0| L 2 | |
<10 10 :
10 ot W
5 5
-20 : | jo¢ ]
0 10 . 20 30 0 10 s 0
R(0) = (X(0),Y(0), 2(0)) Exponential separation of generic

infinitesimally close trajectories

A1) = |R(t) — R'(t)| =~ [A(0)] exp(At)



How to make these observations
quantitative?

We focus on dissipative systems
which are relevant to inertial particles

We need:

1 To characterize the geometry of strange attactors:
fractal and generalized dimensions

2 To characterize quantitatively the sensitive on initial
conditions: Characteristic Lyapunov exponents



How to characterize fractals?

Simple objects can be characterized in terms of
the topological dimension d;

Point e d,=0
Curve N\~ () {CRY dp=l
SurFaCe ' <:>{X,Y}C R2 dT=2

But d; seems to be unsatisfatory for more complex geometries

Cantor set =—————————  KoCh curve
dT=O — — dT=1

(disjoined points) == == — —



Box counting dimension

Another way to define the dimension of an object

Grey boxes
BN Contains at least 1 point

o —

N(Z)# grey boxes | ik

e e

N <D ==

DD =-—lm il
(—0 In/

Mathematically more rigorous is to use the Hausdorff dimension equivalent
to box counting in most cases.



Box counting dimension

For regular objects the box counting dimension coincides with the topological one

L e /’\ —
_— L | === N O
L A
N(f)%z 1) =dg =1 N(@)zﬁD:dTZQ
for more complex objects?
" 1| { N(t) (£=3" N(n)=2"
0 1 1 In(2)/In(3)
Ny =€ " .
2 1/—9 — w— w—1/32 22 DF:—limlnN(g):ln2>0:dT
1/27 (—0 In/ In3
3L - -= ==1/33 23

For fractal object the box counting dimension is larger than
the topological one and is typically a non-integer number
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For the Lorenz
attractor
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Henon attractor

H Bending due to lack of points

-

i

=3 r (P — D g
) Baidiiaa Y
-
10} \§/% 4
e.
~ S N
= 10 oo M=10° points \8\6 '.
— MO > '
U oo Mu *\ '

N
LR &L'. A '\\‘-‘ 1

T\ B ' 10 10 1)

Effect of finite extension



Multifractals: Generalized dimensions

pn (g) 2 5 gan
N (¥¢) N (¢)

Me(a) = 3 Ipw(O)" = DO pe®) = (pr(O)*™)
k=1

My(0) = N—(ﬁ):FD*

The fractal dimension does not account for fluctuations, £ (E)
characterizes the support of the object but does not . . w <}
give information on the measure properties i.e. the way °
points distribute on it. l , |
| —
L Local fractal dimension i
A
L Sum over all occupied boxes izin =

Dig) = 1 lim In M(q)
My(q) ~ £l4=DP@) q—1¢—0 In/

D(q) characterize the fluctuations of the measure on the attractor



Generalized dimensions

<[pB£(m)]q> ~ p1D(a+1)

D(0) = D Fractal dimension
> nsg Pu(f) Inpa(6) ion dimensi
D(1) = lim &n=0 pT - P Information dimension
{—0 n

D(2) = D.,,» Correlation dimension Ps(||lx1 — 2| < 1) ~ »D(2)

the smaller D(2) the larger the probability
D(n) ninteger: controls the probability to find n particles in a ball of size r
D(q) < D(p) for q>p

In the absence of fluctuations (pure fractals) D(q)=D(0)=D;



Characteristic Lyapunov exponents

Infinitesimally close trajectories separa’re exponentially

Linearized dynamics < = f(x(t)) = 5% Z O fi(x(t))ox;

d=1]  6xz(t) = 6z(0)eo Y (@(s)ds — W(o, t)52(0)

1 dx(t 1 [t Law large numbers ergodicity
Finite fime

Lyapunov exponent

[0(t)] ~ |0(0)|e™

Lyapunov exponent

d>1 dx(t) = W(0,t)dx(0)

1

Evolution matrix (time ordered exponential)

We need to generalize the d=1 treatment to matrices
(Oseledec theorem (1968))



Characteristic Lyapunov exponents

1/2
dx(t) = W(0,t)dx(0) [WT(OJ)W(O,Q] = V(xo, t)
~e—

V(zo,t) = Q(z0,t)D(20,1)Q" (w0, 1) <——= Positive & symmetric

D(xg,t) = diag{em}?(m“’t), i ,etvé(mo’t)}

Finite time Lyapunov exponents

Oseledec--> 7Vi(®To,t) —— Ai(xo) = )\, if ergodic

t— 00

A1 > Ao > ... > Mg Lyapunov exponents

What is their physical meaning?



Characteristic Lyapunov exponents

A1
A, => growth rate of infinitesimal segments * & L(t) = L(0)e™’
M+, => growth rate of infinitesimal surfaces ﬁ A(t) = A(0)ePatr2)t

A+A,+A; => growth rate of infinitesimal volumes

A+, +hs+...+Ay => growth rate of infinitesimal phase-space volumes

Conservative systems A+A,+A;+...+A =0

Chaotic systems have at least Ap0 .~
Dissipative systems  A+A,+A;+...+A <0

Lyapunov dimension n
(Kaplan & Yorke 1979) Z Ai
J i=1 |} e ®
DL — J | 0
[As+1]
One typically has D(1)<D, —s
The equality holding for specific systems 1 2




Lyapunov dimension

d
3
Ag+1]

Example L1(0) = Ly(0) = ¢
A>0 A,<0

Ll(f) R GGA't
LQ(ZL,) — ec—l/\2|t

If we want to cover the ellipse with boxes of size / = [,

Number of boxesﬂ

L
~PF o N(0) ~ 2L g~ 172/
(£) I,
A1
Dy =11
) 2ol




Finite time Flucfuafion§ of LE
Se(t) = W(0,102(0) | WO.OWO.0| = V(o

V(zo,t) = Q(xo, t)D(wo,t)QT(a;O,t) D(xp,t) = diag{e”l(f”mt), o etvd(wo,t)}

’YZ'(.’B(), t) : /\,L'(QZ'Q)

For finite t y's are fluctuating quantities, which can be
characterized in terms of Large Deviation Theory

t — oo S(v)

P(y(t) =) ~ e™*0) N /
A

In general

~

— OO

Poy1, Y2 - pa) ~ € P53 7)

The rate function S can be linked to the generalized dimensions
(see e.g. Bec, Horvai, Gawedzki PRL 2004)



Summary

e Inertial particles & tracers in incompressible flows are examples
of dissipative & conservative nonlinear dynamical systems

e Nonlinear dynamical systems are typically chaotic (at least one
positive Lyapunov exponent)

e While chaotic and mixing conservative systems spread their
trajectories uniformly distributing in phase space, dissipative
systems evolve onto an attractor (set of zero volume in phase space)
developing singular measures characterized by multifractal
properties

Next lecture we focus on inertial particles their dynamics
in phase space & clustering in position space



Reading list

Dynamical systems:

e J.P. Eckmann & D. Ruelle “"Ergodic theory of chaos and strange attractors”
RMP 57, 617 (1985) [Very good review on dynamical systems]

Books (many introductory books e.g.):
e M. Cencini, F. Cecconi and A. Vulpiani

Chaos: from simple models to complex systems
World Scientific, Singapore, 2009

ISBN 978-981-4277-65-5

e E. Ott
Chaos in dynamical systems
Cambridge Universtity Press, II edition, 2002
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Goal

Dynamical and statistical properties of particles evolving in turbulence
focus on clustering observed in experiments

Wood, Hwangj& Eaton (2005)

Clustering important for
e particle interaction rates by enhancing contact probability
(collisions, chemical reactions, etc...)
e the fluctuations in the concentration of a pollutant
e the possible feedback of the particles on the fluid

We consider both turbulent & stochastic flows
Main interest dissipative range (very small scales)



Turbulent flows

In most natural and engeenering settings one is interested in particles
evolving in turbulent flows i.e. solutions of the Navier-Stokes equation

(9tu—|—u-Vu:1/Au—poVp+f X7 & vpi=: 1)
With large Reynolds number Re = % = dll;:’;gﬁlvgt > 1

Basic properties

® K41 energy cascade with constant flux ¢ from large (~L) scale to the
small dissipative scales (~n = Kolmogorov length scale)

e inertial range m<< r << L “almost” self-similar (rough) velocity field
opu = |u(x + 1) — u(x)| ~ (er)t/3

e dissipative range r < m smooth (differentiable) velocity field
oru = |u(x+71r)—ulx) <r

Fast evolving scale: characteristic time ---> 7, =7, = = Re1/2

(see Biferale lectures)



Simplified particle dynamics
Assumptions:

Small particles a<«<n

Small local Re alu-V|/v<««1 ///////// Voo

No feedback on the fluid (passive particles) . 4
No collisions (dilute suspensions) N
Stokes number a2
T Ty = S.’rokes
dX % St _— 3v3 time
Ko - Fast fluid
d?L Tf T‘f finﬁe scale
dV Du(X u(X,t) -V -
. = ( ) e ( ) Y) Density §<;)nf’rras’r 0<p<1 heavy
dt Dt St 3 = s B=l neutral
LTEPE 1 p<3 light
dX
roal |4 Minimal interesting model
AV w(X(t),t) -V <: Very heavy particle =0

-l ' (e.g. water droplets in air f=10-3)

dt St



Inertial Particles as dynamical systems

Particle in d-dimensional space
u(x, t)

Differentiable at
small scales (r<n)

X =V )
. X t)-V X, VER
V = BDu(x)+ “ED

St

Well defined dissipative dynamical system in 2d-dimensional phase-space
4 = F(Z, t) F = (V,BDtU(w,t)—*—% Z=(X,V)e R

IL;; = O;F; Jacobian (stability matrix) I ( 0 I )
Oi5 = 87Uz Strain matrix BDio+& —=
d
V-F=Tr(l)=—-5 <0

constant phase-space contraction rate, i.e. phase-space
Volumes contract exponentially with rate -d/St (similarly to Lorenz model)



Consequences of dissipative dynamics

e Motion must be studied in 2d-dimensional phase space
(kinetic theory vs hydrodynamics)

e At large times particle trajectories will evolve onto an attractor
(now dynamically evolving as F(Z,t) depends on time)

e On the attractor particles distribute according to a singular
(statistically stationary) density p(X,V,t) whose properties are
determined by the velocity field and parametrically depends on St & f

e Such singular density is expected to display multifractal
properties; in particular, the fractal dimension of the attractor
is expected to be smaller than the phase-space dimension D.<2d

e The motion will be chaotic, i.e. at least one positive Lyapunov
exponent



Two asymptotics

X =V d
W [)’Dtu(X)—Fu(X’;z—V V-FITT'(L):—§

St=0—_>V -F=—-0 St=00—_ >V -F =0

Particle velocity relax to fluid one

Particle velocity never relaxes

X =V =wu(X,t)Becomes a tracer Ballistic limit, conservative dynamics
Phase-space collapse to real space In 2d-dimensional phase space
where particles distribute uniformly Uniformly distributed in phase space

Dde DF=2d

Dea . .

FT  Possible scenarios
2d —=.-
d & .7 <
»ST




Which scenario for D ? (St<<l limit)

1
Gtu—I—V-u:—p—Vp—H/VQu—Ff V - u=0
f

St | .
Diu(X,t) =V = fDwu(X,t) +2X0-V wup V =y + St(8 — 1)Du

(Maxey 1987; Balkovsky, Falkovich, Fouxon 2001)

V- V=StB-1)V-(uV-u)=S5t(B—1)(S* - Q)
d=2 example

<l S2>0P° =V -V<0

B>1 P*>8°=V-V<0

Ou; strain g, — %
Oz, B B
vorticity 5

O'Z'j

®* B<l heavy
. . * B>1 light
Preferential concentration



Local analysis

The eigenvalues of the stability matrix connect to those of the strain
matrix from which one can see that rotating regions expell (attract)

heavy (ligth) particles (Bec JFM 2005)
Lij = 0; I Iy = ( - g )
O'f,;j = (9jui BDta—i_g St

Strain regions  Rotation regions

= (det[?f])2 ) (TT[<“72]>3 P ér
2 6 j Y > =
A <O ! s
A

3 R eigen

A>0 1R+ 2C eigen. A<O >0
d=3 example




Tracers in Incompressible &
compressible flows

Thus for St-->0 particles behave approximatively
as tracers in compressible flows in dimension d

X =V=xvX,t)=u(X,t)+ St(f - 1)Du(X,t)

o Dissipative
X =v(X,t) Vv < froctal attractor with
Dq<«d
D ,
di expected scenario
2d @ D« implies clustering in
-7 real space, i.e. the projection
-7 of the attractor in real space
d @/_\‘// will be also (multi-)fractal
N ’j’
~— >



Clustering in real & phase space

Fractal with D.<d embedded in a D=2d-dimensional (X,V)-phase space,
looking at positions only amounts to project it onto a d-dimensional space.

Which will be the observed fractal dimension d; in position space?

For “isotropic” fractals and “generic” projections

dr = min{Dp,d}

(Sauer & Yorke 1997, Hunt & Kaloshin 1997)

A

\\

(=

="

So we expect: 2d
e fractal clustering in physical space
with d_=D. when D; «d and d.=d when D.>d d

D(st)

e existence of critical above which
no clustering is observed

d:(st)

St



Phase space dynamics

W

Stl

Collision k-('r) o o (T)(I(SR‘/” |R — 7“> r=a,+a,

rate
Enhanced encounters Enhanced relative velocity
by clustering by caustics

(Falkovich lectures)



Next slides

¢ Verification of the above picture
mainly numerical studies, see Toschi lecture for details on the methods

e How generic ?
comparison between turbulent and simplified flows
dissipative range physics <-> smooth stochastic velocity fields

e Study of simplified models for systematic numerical
and/or analytical investigations
uncorrelated stochastic velocity fields Kraichnan model
(Kraichnan 1968, Falkovich, Gawedzki & Vergassola RMP 2001)



Model velocity fields

Time correlated, random, smooth flows:
Ornstein-Uhlenbeck dynamics for a few Fourier modes chosen so to have
a statistically homogeneous and isotropic velocity field

diuy, 1 2 .
—— = ——u +c¢ u(x,t) = Qg (t)e*™®
= —_— K&k ; (z, 1) Zk-:k()
it can be though as a fair approximation of a Stokesian velocity field
hu = vAu-+f
V.u = 0
Advantage

As few modes are considered particles can be evolved without building
the whole velocity field, but just computing it where the particles are



Kraichnan model

Gaussian, random velocity with zero mean and correlation
(us (=, tyu; (@, ') = [2D00i; — Bij(x — 2 )|t — ¢)

Spatial correlation
Bij(r) = D172[(d + 1)6;; — 2ry7;/7%]  (smooth to mimick dissipative range)

We focus on 2 particle motion allowing for Lagrangian numerical

schemes so to avoid to build the whole velocity field

R=X,- X, Rz—% (R—du(R,t))
P

® good approximation for particles with very large Stokes time t,>>T =L/U
(T =integral time scale in turbulence)

e time uncorrelation => no persistent eulerian structures
only dissipative dynamics is acting (no preferential concentration)

¢ reduced two particle dynamics amenable of analytical approaches

® can be easily generalized to mimick inertial range physics

Bz‘j (T’) _ @17“2}1[(d oo ol 2]2/)51.3. o 2]2,.7'2'73 /7,2] O<h<l non smooth generalization

to mimick inertial range



Kraichnan model

Thanks to time uncorrelation we can write a Fokker-Planck equation for
The joint pdf of separation and velocity difference p(7,v,1)

Jd 10 1 52
Lap> (a ) pa) el = ;Bﬁ("'>av,.avjp =

Bij(r) = D172[(d + 1)8;5 — 27 /7]

, A t’,= t/T The statistics only depends on
By rescaling { 7 B r/ge The Stokes number
v v =TV/ St:@ﬂ'p

Non-smooth generalization
Bij (7’) — @17’2}1[(d — 1+ 212)52_] == 2/2,7’2'7’]-/7"2] St(Z) — DlTp/Ez(l_h)

£ — o0 St(£) — 0 Tracer limit Scale dependent

Ballistic limit Stokes number
e (Falkovich et al 2003)



clustering in Kraichnan model

From long time averages of two particles motion Different projections
XNy ViV, give
equivalent results

P(||R||* + |R|]* < 7) ~ 7% «_phase-space
P(||R||? < r) ~ rt <-Position space

do = min{DQ, d} N PR e [

-
-

»

g DZ(S'I') s Rl s S S e—

24 d,(st) *

. ,“.“‘"‘\. . Evidence of subleading

, ; “e P terms, fits must be done
» . . .

' 4 . .‘6 - d=2 with care

12’ ' : > i Py(r) ~ Ar®F 4+ Br¢
10 10 < 10 10" Ty

Bec, MC, Hillerbrandt & Turitsyn 2008



St<«l Kraichnan

IDEA: for St<«l velocity dynamics is faster than that of the separation

Stochastic averaging method
r,v) =p(r)Pr.(v)+ h.ot
(Majda, Timofeyev & Vanden Eijnden 2001) p( : ) p( ) r( ) T

o . d e Stationary solution
g for the velocity
de2 4 e Perturbative Expansion
// in the slow variable
(the separation)

£ s
G | A

A | Deviation from d
A > 40st is linear in St

0" 10 9’
Bec, MC, Hillerbrand & Turitsyn, (2008)

Results agree with
Dy =d—2(d+ 1)(d + 2) St + O(St*) wilkinson, Mehlig & Gustavsson (2010)
and Olla (2010)



Clustering in random smooth flows
(time correlated)

X =V . N
duk l A Zk.m
V = 8Du(x)+ % ’52 el Y u(z,1) Ek:’uk( e

(Bec '.2004,2005)
We can estimate the dimension on the attractor in terms of

The Lyapunov dimension g

J

Y
Dy =J+ Zz:l '
[AJ+1)

Conditions for D =integer

A,=0 D,=l
}\.1+}\2=O DL=2
M+A,+4A=0 D =3
Looking at the first, sum of first 2 or sum of first 3

Lyapunov exponents we can have a picture of the
(B.St) dependence of the fractal dimension



(B,St)-phase diagram

1.0 -
heavy light
iR particles particles
06 M+A,>0
C‘;S DF> 2 }\.l + )\.2< 0
04

1<Dg<2

0 0.5 1 1.5 2

Light Particles being
attracted in point-like
attractors (trapping
in vortices)

02— A, <0
k',.\ O

25

05 -
heavy |\ light
il particles particles
/ AM+Ar+A3>0
03
- D>3
A
02
: }~.|+ >\.2+ }\.3 <0
0
0 05 1 1.5 2 2.5 3
p

Notice that D.>2 always
vortical structure
Seems to be not effective in trapping
Ligth particles



Lyapunov dimension for =0

0S = ; - - ~ -
10" — Deviation from d

o is quadratic in St

nw | : . J - Y Y 2

A s* | ) ~ d — aSt

s | faa g [ Dy(St) ~d — asi
3.7 de3 d=2 in uncorrelated flows

W ‘ ' is linear

025 | . | StT
- Critical St for clustering
in position space
-05 * .

0 0.1 02 03 04 04
St




Clustering in position space

No clustering

B=0 heavy
05 r - - - .
028 | j
d=2 |
©

l_I d=3
) 0\" ““““““““““““““““““
025 | «
05 - J
0 0.1 02 03 0.4 05

St



Multifractality
—— .,

T
A
(A
) o
qD(q+1
<[po(:n)] > ~/
D(0) = Dr  Fractal dimension q
N(£)
D(1) = lim 2n=0 pT(? In pn (¢) Information dimension
{—0 n

D(2) = D, Correlation dimension Pa(||x1 — x2|| < 1) ~ rP(2)

D(n) ninteger: controls the probability to find n particles in a ball of size r



Particles in turbulence

8,:u+u-Vu:1/Au—#Vp+f X
Vou=90 :

]
<

e DNS summary

N

- N3 Re, [P St range

S e 5123 185 | 0->3 | 0.16->4

St " 2pn ,§ P i 1283 65 | 0->3 | 0.16->4
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Preferential concentration

Strain rotation , )
- ; det[5] Tr[67] . -
E B () () ey=0m

o~ —a ‘? A<O0 3 R eigen

A<O »i?A)O e A>0 1R+ 2C eigen.

Heavy particles like strain regions
Light particles like rotating regions P(A>0)
l r

06 1 09 F
[ ox |
| .
055' p(A>O) ! 0‘7 s
| . 06 }
os;. . ' 05
1 P 044
D45 | & . o _O !
‘. o B-
o‘ ;- - - - - - - . S‘
0 05 1 1S 2 25 3 a5
St

Correlations with the flow are stronger for light particles
Bec et al (2006)



Lyapunov exponent

Heavy
St««l
M(st) > Ay(st=0)

stay longer in

strain-regions M (st) < Ay(st=0)

Due to staying away from strain-regions

uneven distribution of particles Calzavarini, MC, Lohse & Toschi 2008



Lyapunov exponents

This effect is absent in uncorrelated
Flows (Kraichnan), absence of persistent
Eulerian tructures:

preferential concentration is not effective
Actually in this case PC

should be understood as a cumulative
effect on the particle history

(P. Olla 2010)

The effect can be analytically studied
systematically in correlated stochastic
flows with telegraph noise

(Falkovich, Musacchio,Piterbarg & Vucelja (2007)

Large St asymptotics
Valid also in correlated flows
Expected in turbulence for t,>>T,



(B,St)-phase diagram

d=3 turbulence d=3 r:andom flow

35 ¢ 05
5 Heavy Ligth heavy light
3 particles particles 5 particles \ particles
25 | }\IB}\ZB;\3>O ~ & el
. > : ' o ”
St ¢ " P A+A,+A5<0 S Dg>3
f
1.9 2<Dg<3 A#A,<0 02 :
' D.<2 | Mthards <0
0% A i 2<Dp<3
0o : 0 © -
. 0 05 I 15 2 25
0 05 1 45 2 25| 3 "

Signature of vortex filaments?
Which are known to be long-lived in turbulence



Lyapunov Dimension

25 - ,:
“F‘“k;....“"'“../'. = -
sh g™ >
3 I.
.'o 3 '..
| T4 Re-75,185
o) S J b} b 3 | A "
- 2
35
3
) .25 b
dy = K+ =2=18 Ai ¥
I)‘K+1| 15

Light particles stronger clustering
D,=1 signature of vortex filaments

Light particles: neglecting collisions might be a problem!
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Clustering of heavy particles
in position space

e Dissipative range -->Smooth flow -> fractal distribution
* Everything must be a function of St, & Re, only ($=0)

:U e e e e eey E R T ——— » -'-'-.0.. e e e ey w 'n--u‘

. correlation dimension

Py (r) ~ e

Prob(R, , <r)

10’
Related to radial
: —— 51202 distribution function
‘™ | v St w 048
: * S1= 069 Sundaram & Collins (1997)
| ——51-0"
' : ——Cr 112 Zhou, Wexler & Wang (2001)
" —*— Stw 1.60 Do—d
I« o S DO | [ AD emenl A g(r) ocr Dy —d <0
10 10° L 10 10* 10 {1

-
-
-
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Correlation Dimension (p=0)

" T SLERA

3 81 ¢
s é s
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ooy *Maximum of clustering for St =1
o: . *D, almost independent of Re,

ous | \ . *Link between clustering and
Soeg® Preferential concentration



Multifractality
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Briefly other aspects

* How to treat polydisperse suspensions?

= Can we extend the treatment fo suspensions of
particles having different density or size (Stokes
number)? Important for heuristic model of collisions
(for details see Bec, Celani, MC, Musacchio 2005)

* What does happen at inertial scales?

= So far we focused on clustering at very small
scales (in the dissipative range r<n) what does
happen while going at inertial scales (n<<r<<L)?

(for details see Bec, Biferale, MC, Lanotte, Musacchio & Toschi 2007
Bec, MC. & Hillerbrandt 2007; Bec, MC, Hillerbrandt & Turitsyn 2008 )



Polydisperse suspensions

e.g. =0 with St, and St,

e St,=St, same attractor
e St=St, “close attractors”

® there is a length scale », — 5 Asit

R=x0_x@ w=v0 _y®

Au = u(X®) - u(X®) x By

dR dW 1 Au—-W 1ASt a—V )
7 ' - AS A

dt dt ot 1— (45:) T St l—(IS,-—) )

St = (Sty + St3)/2

rd r < r* <-uncorrelated

Py(r) ~ { rd2(St)

r > r* <-correlated
(through the fluid)

Relevant to collisions between
particles with different Stokes




What does happen in the inertial range?

eVoids & structures
fromn to L

eDistribution of
particles over scales?

eWhat is the
dependence on St,? Or
what is the proper
parameter?




Insights from Kraichnan model

h=1 dissipative range

Bij (r) — @17‘2}7‘[(d — 1+ 2]2)513 = 2]2,.7"Z'7°j/?°2]

h<l inertial range

The statistics only depends on the local Stokes number

St(f) = Dirf P 5 o am—

19 v i i (@)
.« e c v
Tracer limit = o
g 15' ' ;
€—>oo:>St(€) —3 {) %”. =310
Ballistic limit __g_-M = h= 172
¢ — 0= St({) — o0 ST w7010
c 18
Particle distribution is no more S A ——h=ono
Self-similar (fractal) g o bo(r) = In P<(r)
(Balkovsky, Falkovich, Fouxon 2001) e LY P o B A . _7151_7'

10~ 10" 10 10’ 10°

do (71 S
PQ (T) ol i 2(7) (Bec, MC & Hillenbrand 2007)



In turbulence?

Not enough scaling to study local dimensions
We can look at the coarse grained density

-

Poisson
(z=0)

Algebraic tails signature
of voids p(p) X po‘('ra"')



What is the relevant time scale
of inertial range clustering

For St->0 we have that
Vau—1Diu=u—1(0u

u-Vu)

V-V = —rV (Vi) = TVZP Effective compressibility

We can estimate the phase-space contraction rate for
A particle blob of size r when the Stokes time is t

1 1

7;"7' a T [0:7]3

)

=— | d&PzV.V~—

Tora 710,V
r r

It relates to pressure



Time scale of clustering

L B i BTV _7'57-a N TO VP

'I,- T 7“3 [0:7]3 r /i

)

4/3
LR G S
K4l 6, Vp=éra= g Evy(k) ~ k~1/3 1, = e2/3

Finite Re corrections on pressure spectra
experiments [Y. Tsuji and T. Ishihara (2003)]
DNS [T. Gotoh and D. Fukayama (2001)]

10°

Low Re- possible corrections due to sweeping

Usiu _ Ut/ { By(k) ~ k™% ) :
5rv ~ 5,.61, ~ r ~ —— 2 T ~
P T r2/3 Ev,(k) ~ k3 gl Utel/3




Nondimensional contraction rate

—5/3

~R61/4S,7 (%) NRe_ls (L) —5/3

Adimensional contraction rate I=_
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Summary

Clustering is a generic phenomenon in smooth flows: originates from
dissipative dynamics (is present also in time uncorrelated flows)

In time-correlated flows clustering and preferential concentration are
linked phenomenon

Tools from dissipative dynamical systems are appropriate for
characterizing particle dynamics & clustering

= Particles should be studied in their phase-space dynamics
= Clustering is characterized by (multi)fractal distributions

= Polydisperse suspensions can be treated similarly to monodisperse ones
(properties depend on a length scale r7)

Time correlations are important in determining the properties very for
small Stokes (d,-doSt! or St2, behavior of Lyapunov exponents)

In the inertial range clustering is still present but is not scale
invariant, in turbulence the coarse grained contraction rate seems to
be the relevant time scale for describing clustering
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