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Chapter 1

Discontinuous signal— Dirac
Distribution

1.1 The heaviside function H(z)

H(x) is a function defined as follows for a real number z :

1,25%
H(z)=0ifx <0 =
H(m) =1ifx>0 (1.1) H(x) 075?
053
0,25%

RRRACRRRRRRRRRRRRRRRRRRRRRA]

o
(9]
o

We sometimes speak of a “step function” or a “unit step”. H(z) in not defined at x = OB However, we will
sometimes make a continuous extension when necessary ; for example the function H(z) + H(—=x) is 1 Va # 0 but
is not defined at = 0. We will therefore extend it (by giving it the value 1) at = 0 so that it is continuous on R.
We sometimes define H(z) by making use of any function f, denoted as test function by the relation

/Z F2) H(z) do = /OOO F)da (1.2)

it is the definition in the sense of distributions (though distribution theory will not be presented in this course).
In physics, H(t) is sometimes used for functions of the time ¢ which are zero-valued for ¢ < 0. For example, a
stone released at t = 0 from the altitude zy without initial speed has a motion described by the altitude function
2(t) = 20 — 3gt>H(t). Another example in optics if the transmission coefficient of a half-plane.

1. There exist other determinations at # = 0 according to various authors. We can thus find H(0) =0, H(0) =1 ou H(0) = %
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FI1GURE 1.1 — Example of functions using the Heaviside unit step.

1.2 The rectangular function I1(z)

The rectangular function (or rectangle function, or gate function) Il(z) is also a piecewise discontinuous function : :

0,75;
M(z) = 1if [z| < % E
II(x) = 0 otherwise (1.3) 05—:
0,25{

III||||"+J7|||||||||

-1,0 -0,5 0,0 05 10

It is not defined at its two edges x = :I:% (but continuous extensions may be applied if necessary). This function
has a width 1, i.e. it is nonzero on an interval of width 1. II(z) is linked to the Heaviside function by

M(z) = H(z + %) — H(e— %) (1.4)

In physics, the rectangular function is sometimes used to define signals of finite duration. Hence the function

1,0

0,75

s =n(=2) (15)

0,25

| NNLILIL 71" S I B S e e e |

2 3

I
-
o

corresponds to a gate of width a (or duration a if ¢ is a time) centered at ¢t = b. Another example is the charge
density of a sphere of diameter D centered at the origin, of uniform charge density pg. Its charge density in the
whole space can be expressed, in spherical coordinates (r designates the distance to the origin), by the function

p(r) = po (5).
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T1(x=3)+T1(x+2) , 4 TIOHTIC-0.5)
1 1

2 3 —05 05 1 15
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TI(x) +I1 (x—1) =I1 (*=0- x—nb
o -
-0.5 05 1 L5

0 b 2b 3b 4b
Crenel function (a<b)

Continuous extension at x=1

FIGURE 1.2 — Examples gate functions and sum of gates

2D rectangular function

We consider functions of 2 variables x and y. The quantity
fla,y) =(z) = I(x)1(y)

describes a strip of width 1 parallel to the y axis : it is invariant by translation along y. The notation 1(y) stands
for a function which value is 1 whatever y.
A two dimensional rectangle function of width a in the z direction and b in the y direction expresses as

flz,y) =11 (2) IT (%) (1.6)

It is represented in perspective plot in[I.3] This function is often used in optics to express the transmission coefficient
of rectangular slits.

2D circular function

We consider the following quantity :
p
fay) =1(5) (1.7)

with p = /22 + y2. Its value is one for p < %, i.e. inside a disc of diameter d (see Fig. . This function is used
in optics to describe transmission coefficient of circular diaphragms.

1.3 Dirac distribution §(z)

1.3.1 Heuristic approach

We consider the function
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FIGURE 1.3 — 2D rectangular function f(z,y) = II (z) I (%) of width a in the z direction and b in the y. Left :

a
perspective plot as a function of z and y. Right : gray-level representation in the (x,y) plane.

FIGURE 1.4 — 2D circular function f(z,y) =11 (5) of diameter d. Left : perspective plot as a function of = and y.
Right : gray-level representation in the (x,y) plane.
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1 . 4 e=1/4
- - z 1.8
g@) =~ T1(%) (1.8)
2 e=1/2
‘ / e=1
~12 -1/ 4o X

It is a rectangle of width e and height 1/e. Its integral is 1 :

/ ge(x)dx =1 (1.9)
When € — 0 this function has a width which tends to 0 and a height to infinity, but its integral is always 1. We
will call Dirac distribution and we will denote §(z) this limit :

1 x
i) =tm - TT(7) (1.10)
0 has a zero width, an infinite height and an integral 1. It is often denoted as “Dirac impulse”. The graph of § will
be represented by an upward arrow, of height 1, centered at x = 0.

The height of the arrow is 1 to mean that the integral d(x)

of § is 1. For the graph of 26, it will be an arrow of ]

height 2. Be careful, do not confuse § with the

Kronecker function which takes values 0 and

1, and is the discrete analog of the Dirac delta

distribution. 0 X

It is easy to see that N §(z) (with N # 0) has an integral N, but there is a problem if N = 0. We shall admitﬂ
that 0.9(z) = 0.

We also have the following properties :

0(x—a)

— Translation : d(x—a) is 0 everywhere excepted
at = a (Dirac impulse located at = a)

— The sum
Ki16(x —x1) + Ko 0(z — x2) (1.11)

is a double peak, of integrals K; and K; lo-
cated at x7 and xo. If 1 # x5 there is no
superposition of the two peaks (the first one
is zero everywhere except at z1, the second is
zero everywhere except at o).

— The integral of §(z) is 1 on any interval [a, b] ; o)
so that a <O and b >0 : Domazine
b d’intégration
/ O0(x)dx =1 (1.12)
a a 0 b

In phy-
sics, the 0 distribution is used to describe impulses, such as a very intense and very brief force (a kick in a ball).
Point charges are also described by § distributions : an infinite density in a zero volume but a finite total charge.

2. In physics,  does not exist, we will rather be dealing with very localized functions of very high but finite amplitude such as ge :
the product 0. ge(z) = 0 is no more a problem in this case, and tends towards 0 when € — 0
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1.3.2 Fundamental property — Definition of ¢

Let f a function of a real variable x, not infinite at x = 0, and integrable over R. We denote as I the following
quantity :

I= / f(z)d(x) dzx (1.13)
To approach this integral, we make use of the function g. whose ¢ is the limit when ¢ — 0 :

r= [ iy ) (1.14)

and we permute limit and integral (ensuring that the integral converges in the interval) :

I= lgl}) - f(z) ge(x) de (1.15)
as the function g.(x) is zero outside the interval [—£, ], the integration domain is reduced to this interval. We
obtain : .

B 1
I =lim f(x) = dx (1.16)
e—0 < €
the variable change = = ey gives :
1
I=lim [ fley)dy (1.17)
e—0 7%
and its limit is .
2
1= " jody = 50 (1.18)
-2
We eventually obtain :
f(@)8(x) dz = £(0) (1.19)

which is in fact the true definition of the Dirac distribution §. Warning, this is only valid if f(0) exists, writing

o(x)

does not make sense. § is not an ordinary function, in the sense that it is not defined by its value at each

x
point (saying that it is infinite at 0 is not enough). ¢ is in fact defined by the integral under a curve : we speak of
distribution and not of function.

f(x)
€
On a graph, when € — 0, the integral [ f(z) g(z) dz fl0)
corresponds to the surface of the rectangle of width €
e and height f(0)/e. This surface is f(0). A
X

We can also remark, since f(z)d(z) is zero everywhere except at & = 0 where it is infinite, that this product can
be assimilated to a Dirac distribution. And since its integral is f(0), we have

f(x)o(z) = f(0)d(x) (1.20)

which generalizes in :

’f(x)é(x—a) = f(a) (5(3:—(1)‘ (1.21)

1.3.3 Some properties of ¢
0 may be built with any function

Let g a function non singular at the origin, of integral 1 on R (not necessary a gate function). It can be shown that

5(z) = lim * g (f) (1.22)

€
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To obtain this, let’s consider a test function f, integrable on R, and calculate the integral :

I= /_O:O f(z) lim lg (E) dx (1.23)

€

by reasoning similar to that of the previous paragraph, we show that I = f(0). Therefore, from the definition of §

1
given in the section1.3.2| the quantity lirr(l) -g (E) identifies to 6(x).
e—0 € €

0 is even

This is trivial : 0(—z) = 6(x)

Dimension of d(x)

If = is a physical quantity having a dimension (for exemple a length). The integral

/ §(x) dz (1.24)
is the dimensionless number 1. As a result, the product §(z) dx is dimensionless and

[6(2)] = [«]™ (1.25)

— | The delta impulse 6(x) is homogeneous to the inverse of its argument x. ‘

Contraction or dilatation

Let a a nonzero real number. What is the value of §(az)? It is easy to see that §(ax) is 0 everywhere except at
2 = 0 where it in infinite. It can therefore be assimilated to a Dirac distribution and can be written K §(x). The
constant K is simply the integral of é(ax) on R. Let’s calculate K :

K= /OO 0(ax) dx (1.26)

the variable change y = ax gives
e 1
K= / o(y) al dy (1.27)

the absolute value |a| comes from the change of sign of the limits if a < 0. We obtain K = ﬁ And we have this
important property :

1
O(ax) = al d(x) (1.28)
a
Distribution §(f(x))
Example :
Let f(x) = 2% — 1. This function has two zeros at x 4 1. The A
quantity d(f(x)) is zero where its argument f(z) # 0 and infinite S(x)
where f(z) = 0, i.e. at £ 1. It can be written as the sum of 2
Diracs peaks centered at -1 and 1 : -1 ]
0(f(z)) = Kid(x + 1) + Kp0(x — 1) (1.29) X
the constants K7 et K5 are calculated below. T T

K;d(x+1) Kyd(x—1) *
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To calculate K, we integrate §(x? — 1) around the point & = 1. We choose an integration domain 0 < € < 1 around
x = 1. We obtain :

14+e€
A@:i/ §(2® — 1) dx (1.30)
1—e
than we make a Taylor expansion of f around z =1 :
f@) = f)+(@-1)f1) = (z-1) (1) (1.31)
it comes
14+¢
Ky ~ / 5((x—1) /(1)) dx (1.32)
1—e
so, if f'(1)#0
1 1+e 1
Ko~ —— o(z—1))dxr = 1.33
SRTZOTF S N 6] 139
the same reasoning applied to the calculation of K7 (near the point x = —1) gives
1
so that : ) 1
§(x* —1) = §(x—1) + ——d(x+1 1.35
= e e ety 139

Generalisation We consider a fonction f having N roots at © = x; and nonzero derivatives f’'(x;) at © = x;.
The quantity 6(f(z)) is zero everywhere except when f(z) = 0, i.e. for = z;, where it is infinite. As for the
example above, it behaves as a sum of Delta peaks located at x = x;. The calculation of integrals under each peak
can me made following the same process as above. We obtain :

N
S(f@) = 3 mau ) (1.36)

i=1

1.3.4 Derivative of discontinuous signals
Derivative of the Heaviside function

Heuristic approach The Heaviside function H(x) has a slope 0 everywhere except at = 0 where it is infinite.

Can we deduce that its derivative is a ¢ distribution ?
To check this, we can define H(z) by the limit ¢ — 0 of the

function G¢(z) define as :

€
Oifr < —= .
HesTy if L Get
Gy =] L+ litlal < (L3 e
€ :
Oﬁx>§ r N
—£ & X
This function has a slope 1 which tends to infinity, inside an in- 2 ]2
terval of width € — 0 around the origine. It is easy to see that its e=1/3
derivative is a gate function : Gé (x)
1 T
Q) = = (7) 1.38
(=1 T1(° (1.38) .
which tends towards d(z) when € — 0. And since G¢(x) — H(z) e=2
when € — 0, we can deduce that H'(x) = 6(z). ‘ -
X
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Proof Let’s calculate the primitive of § : ffoc 0(t) dt. This integral is 0 if © < 0, 1 if z > 0 and not defined at
2 =0 : this is exactly the definition of H(x). Hence :

x
H(z) = / 5(t) dt (1.39)
—o0
and
dH
de
this generalises the notion of derivative to discontinuous functions.

6(x) (1.40)

Derivative of a function discontinuous at the origin

We consider a piecewise function f. We call fy(x) its value for z > 0 and f_(z) its value for z < 0. It is assumed
that the two functions do not connect at the origin, the discontinuity jump is h = f1(0) — f_(0). We want to have
an expression of the derivative of f at the discontinuity. As for the Heaviside, the function slope is infinite at x = 0
and we expect to see a ¢ distribution appear.

Let’s write the general expression of f, using the following compact form :

f(@) = H(z)f+(z) + H(-z) f-(2) (1.41)
then apply the usual rules of derivation to find the derivative of f :
f(x) = H(x)fi(z) + 0(2) f+(2) + H(—2) fL(x) — 0(—2) f-(2) (1.42)
which gives after using the property f(2)d(z) = £(0)3(x)
f(z) = [H (@) f\(z) + H(—z) fL(2)] + 6(2) [f+(0) — f-(0)] (1.43)

the first bracket above is the usual derivative of f at any point x # 0. The second term concerns the behavior at
the origin. We find the result that

— the derivative at the origin of a function f presenting a discontinuity h is equal to hé(x)

In physics, a sudden change in speed (elastic shock for example) can be treated using this formalism. The velocity
discontinuity corresponds to a ¢ distribution in the acceleration[’]
Derivatives of ¢

Heuristic approach We have introduced the Dirac distribution as the limit of an infinitely high and narrow
gate function whose integral is 1 :

- TI) s
1 X ,
1 gg(x)=g—n[g] L 8
€3
o el
1 A T 2 2 2
|2 l v
el
el e el X

2 2

3. It is of course a modeling; in reality the speed never changes instantaneously and the acceleration is actually a very high and
very narrow peak
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In the same idea, we can imagine approaching the derivative of § by the derivative of this gate (drawing above).
The derivative of II(x/e€) is 6(x + €/2) — 6(x — €/2). When € — 0 it tends towards the superposition of 2 Diracs
centered at 0, of opposite sign, each of infinite integral. Of course it is simply a representation, there is no question
of calculating the limit (the result would lead to writing 26(x) — 26(x) which doesn’t make sense).

The proper definition of 4’ is indeed, in the sense of distributions :

| f@@d =10 (1.45)
where f is any test function derivable at © = 0. Similarly we define the derivative of order m by
| @)™ @) s = (-1 o) (1.46)

In electromagnetism we use the distributions ¢’ to model the dipole moments.

1.4 The Dirac comb ITI(z)

The Dirac comb is composed of a periodic succession
of ¢ impulses :

(z) = > 6&(z—mn) (1.47)

n=-—oo

its period is 1. The comb is of capital importance in 1

signal processing, it is the tool which makes it pos-

sible to formally describe the sampling operation. It

is also the basis of the representation of all periodic

phenomena as we will see in the next chapter (convo- -3-2-10 1 2 3 X
lution)

Scale change The comb III(x) has a period 1. How is the comb of period a > 0 written, i.e. whose “teeth” are
d peaks of integral 1 spaced by a? This quantity, that we will denote as II1,(z), can be expressed as :

I, (x)= » &z —na) (1.48)

Using the relation §(az) = ﬁé(m) we can write
1 = x
I, (z) = — ol—— 1.49
() al n;oo (a n) (1.49)
and finally
1 x
I, (z) = — M1 (< 1.50
()= () (150)

The classic error when writing a comb of period a is to forget the term 1‘ in factor : it is this which ensures that

Taf
the Diracs have integral 1 (if you forget it, their integral is a). It also contains the dimension of the comb (III,(z)
is indeed homogeneous to 1/x and to 1/a whereas II(x/a) is dimensionless).

1.5 Two-dimensional Dirac distribution

We define the two-dimensional Dirac distribution by

o(z,y) = 6(x).6(y) (1.51)

it is sometimes denoted by 26(z,y). It is zero everywhere except at the point (x = 0,y = 0) where it is infinite and
verifies the property

/O; /Z Sx,y) dady = 1 (1.52)
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S(x—ayv—b’
5(x) (x—a,y—b,

FIGURE 1.5 — Perspective representation of a two-dimensional Dirac peak. On the left §(z,y) is centered at the
origin. On the right 6(z — a,y — b) is centered at the point of coordinates (a, b)

As with its one-dimensional counterpart, d(z,y) can
be thought of as the limit of a 2D gate function, i.e.
a rectangular parallelepiped with area €2 and height
1/e?:
1 €
e x y
sy =t S T II(E)  am
1/e?
——

2D rectangle function of side € and integral 1.

When € — 0 it becomes infinitely high and

infinitely thin, its integral is always 1. It tends

towards d(x, y).
The two-dimensional Dirac is for example used in optics to model the transmission coefficient of a very small
diameter diaphragm (“pin-hole” in English). We can also define an N-dimensional function é(7). The classic example
is the point charge ¢ located at iy whose charge density is

p(7) = q (" — 7o) (1.54)

which is zero everywhere except at 7 = r, and whose integral is q.

2D Dirac comb
The 2D Dirac comb (sometimes denoted as “Dirac brush”) is the product of 2 combs in directions x and y :

o0 oo

W(x). M(y) = > > o —na,y—pb) (1.55)

with a and b the periods in x and y directions.



Chapter 2

The convolution

2.1 Definition

2.1.1 Definition
Let f and g two functions integrable on R. We call convolution product of f by g the following integral :

M) = (o)) = [ " iyl — o)da (2.1)

or, more simply, h = f % g. It is a functional operation, it acts on the two functions f and g and returns a function
h. The notation h(x) = f(z) * g(x) is incorrect because f(x) denotes a number and not the function f, but it is
sometimes used out of habit or simplicity .

2.1.2 Physical significance

This is the superposition integral of two functions of z’ : f(z') and g(z — z’) = g(—(a' — x)). The latter is simply
the function g, flipped horizontally and shifted to the point x. The operation can be schematized by the example

of the figure

Particular case : convolution by a gate function Let g(z) = % I1 (%) a gate function of width a and integral
1. The convolution of any function f by g writes as :

o) = [T (5 ) = 2 [ s 22)

—a/2

it is a moving average, ie an average value of f over an interval of width a around the point x. This operation has
the effect of attenuating the rapid fluctuations of f as shown in figure and is often used in signal processing to
reduce the noise.

2.2 Properties of the convolution

2.2.1 The convolution is a commutative product

Convolution is a commutative product between two functions, in the sense that it has the following properties
Internal law : the convolution of two functions is a function
Associativity : (f*xg)«h = f*(g*h). Proof :

oo

((f * 9) % h)(z) = / (f * ) (& h(z — o)’

x'=—00

/; h(z — ') /yoo f(y)g(z’*y)dydl”:/oo fy) /:o 9(z" = y)h(z — 2')dx'dy

'=—00 =—00 Yy=—00 '=—o00

- /OO f() /m () —y - 2)dzdy == /m F(w)(g * W) (z — y)dy

= (fx(gxh))(z)

15
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(a) (b)

fix') 1 g(x')
O,?Sg
0,5;
0,25;
YA I Iélllll‘l‘ L4 5 I u'u_ollllzlllxlélt
X
(c) e g(xo-x') (d)
0,75
0,5;
0,25;
_|4...._|2‘..,0....£...IA
X0 X

(e)

h(x) : convolution
product

|
o]
1
o
|
[
|
[
|
—
[
=

FIGURE 2.1 — Convolution of two functions f and g. (a) : graph of f(z’). (b) : graph of g(z’). (¢) : graph of g(z —z’)
for a particular value xo of  (the presence of the - sign in front of 2’ has the effect of reversing the z axis). (d) :
product of the two functions f(2').g(zo — 2) : the hatched overlapping area ho = h(zo) = [0 f(2)g(zo — 2')dz’

is the value of the convolution product (f * g)(x) for x = zg. (e) :

values of x, we obtain the whole function h.

when we repeat the operation for all possible
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(G) 1,0 f(X') (b) ZJOE g(X,)

I T T T AT

\ /\ \A\ /\\ A T T T ¥ T T T T /\ [\ If\\ T l/ T T
WAVVEY VIV v % 2 o
X
- h(x)
(© 107 1
-4 r ?12 =T —T —F ‘j‘

FIGURE 2.2 — Effect of a moving average (convolution by a gate function of width a) on a function f presenting
rapid oscillations. (a) : the function f, (b) : the gate (of width a = 0.8 in this example), (¢) : the function f and the
area of the product f(x').g(xo — ') with xg = 2 on the example. (d) : result of the convolution. The convolution
has the effect of attenuating these oscillations by averaging the values of f over the interval of width a (the parts
of the curve above and below the average over the interval compensate each other).

Commutativity : f *x g = g* f. The proof is trivial by variable change
Neutral element : this is the § distribution. In effect,

(r+8)@) = | T @) — ')’

'=—o00

'=—o00 '=—o00

= f(x)

we can therefore write that f «§ = f. The physical meaning of this property is to represent a function by a
o0

:/:O F@)5(x — 2')da! = f(:r)/:o 5(x — o)da’

“sum of impulses”. The function f(z) = (f*J)(z) = f(2)d(z — 2")dz’ can be seen as a continuous

sum of Dirac pulses F'(z') = f(a")d(x — a’) located at ' =z and weighted by f(z').

2.2.2 Other properties
Linearity

On a :
— frlgh)=Frg+ feh
— Let a any constant :, f * (ag) = a(f * g)
By generalisation, one obtains : f %Y angn = Y. an(f * g,) with a, a set of constants and g,, a set of functions.

Convolution by 1

We denote here 1(z) the function of value 1 for all z. The result of the convolution of any function f by 1 gives :

o0 oo

@@= [ sene-sa = [ fa (2.3)

x'=—00

So the integral of f on R can be written as a convolution of f by the function 1. This may sound “far-fetched” but
it may turn out to be practical, as in the proof of the following property.
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Integral of a convolution
The integral on R of f * g is equal to the product of the integrals of f et g :
JIxg=1x(fxg)=QQxf)xg=[flxg=[f.[g

using the notation [ f for the integral of f over R (which is a constant equals to [ f.1).

Translation

To translate (change origin) a convolution product f*g, one just shifts one of the two functions f or g. Thus (using
improper, but convenient notation) :

(fxg)(x+a)=flz+a)xg=[fxg(xz+a) (2.4)

with a a real constant. the demonstration is trivial by simple variable change.

Derivation

To derive a convolution product f x g, just differentiate one of the two functions f or g (if you differentiate both,
you get the second derivative of the convolution) :

(fxg) =f+g=fxg (2.5)
This property can be proved using the previous one by writing the derivative f’ as the limit of the rate of change
of f.
Change of scale
For any real constant A\ we have the property :
(f+g)(Ax) = |Af(Az) * g(Az) (2.6)

which can also be proved using a variable change.

Convolution by §(z — a)

This is an important property in terms of physical significance. Thus, using the ‘translation property we can write

fxé(x—a)=(f*6)(x—a)=f(x—a) (2.7)

and we obtain an interesting result : to translate a function of a quantity a, one convolves it with a Dirac peak
d(z — a). We will often write this incorrect (but practical) formula :

[ f(2)#6(x—a) = f(z - a)| (2.8)
A fix) A0 (x—a) Af(x—a)

*

=y

X X

Convolution by a Dirac comb
Using the previous property it immediately comes
(oo} (oo}
(f =D (z) = f(x) % Z §(z —na) = Z f(z —na) (2.9)

a
n=—oo n=—oo

To convolve f by a comb is to “periodize” f, i.e. is to create a periodic function from an infinity of replicas of f
centered on the “teeth” of the comb, and sum all these replicates. The operation is illustrated by figure [2.3] and
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FIGURE 2.3 — The convolution of a function by a comb has the effect of periodizing the function. (A) : on the left
the (Gaussian) function, in the center the comb (of period 2 in this example) and on the right the result of the
convolution which is a periodic function of the same period as the comb, and whose pattern is the Gaussian. (B) :
same thing with a larger Gaussian : the result of the convolution shows an overlap between the different patterns.

shows in particular that if f has support limited to the interval [~%, §] then the replicas of f are disjoint and the
pattern of the periodic function f x I, is f. Otherwise the different replicas of f overlap and sum up.
Any periodic function f of period a can thus be written in the form of a convolution of a pattern ¢ by a comb of

period a. The pattern is the value of f limited to the interval [-%, 5], i.e.

o(x) = f@) [T (%) (2.10)

We can for example write
x

cos(x) = {cos(m) H (%)} x () (2.11)

2m

2.3 Application to the solution of linear differential equations

2.3.1 Example

We consider a mass attached to a spring. We exert on the mass a force F'(t), and we are interested in the elongation
x(t) of the spring with the following initial conditions :

2(0) = 0 F(1)

The differential equation of the motion of the mass is that of a harmonic oscillator, it is written
2" (t) + wx(t) = F(t) (2.12)

with w the oscillator’s natural frequency. It is a linear equation (if we multiply F'(t) by a constant a then the
solution z(t) is also multiplied by a). We are going to show that the solution of such an equation can be written
as a convolution between two functions : F(t) (second member) and a function R(t) called “impulse response” (or
“point-spread function”).

We are first interested in the case where the force is of the d(t) type, ie a very intense force for a very short time
(an impulse). We call R(t) the corresponding solution (elongation), it obeys the equation of the oscillator. It comes

R"(t) + w?R(t) = §(t) (2.13)



CHAPTER 2. THE CONVOLUTION 20

then we convolve the two members of the equation above by the function F(¢) :
FxR' +WF+«xR=Fx6 (2.14)

and we use (i) the equality F'«0 = F and (ii) the property of derivation of a convolution product : x xy’ = (x*xy)’.
We obtain
(FxR)" + w? (F*xR) =F (2.15)

This equation is identical to the equation satisfied by x
2 4+ W ox =F (2.16)
Since the solution must be unique, we necessarily have
r=FxR (2.17)
The impulse response R(t) describes the motion of the mass when an impulse force (which is zero for ¢t > 0)
is applied to it : R(t) is therefore, when ¢ > 0, the solution of the equation without second member. The exact
calculation of R(t) will be detailed in paragraph
2.3.2 Generalisation
Consider a physical system governed by a linear differential equation
ay +ary +ay’ + ... +ay™ =F (2.18)
and R its impulse response, solution of
aR+ a1 R +asR’ +...+a,R"™ =6 (2.19)
the reasoning of the previous paragraph applies and we also have the convolution relation
y=FxR (2.20)

it is a quite remarkable property and which makes it possible to replace the sometimes laborious resolution of a diffe-
rential equation by an integral calculation. This only works if the equation is linear, as shown by the example below :

Case of a nonlinear equation : let’s consider the example
2" (t) + k2 (t) = F(t) (2.21)
with k a constant. We call R the solution of
R'(t) + kR*(t) = §(t) (2.22)
convolve the two members of this equation by F, it comes
(FxR) +kF*R*=F (2.23)

which compares to the equation
2" (t) + ka®(t) = F(t) (2.24)

but we can no longer identify x here with F * R because of the square term : x? # F x R2. In this case the solution
of the equation is not put in the form of a convolution.

Vocabulary Writing the solution of the equation in the form of a convolution makes it possible to separate two
contributions :
— An external contribution F(t) (the exciting force in the example of the spring)
— A contribution specific to the physical system : the impulse response R(t) (which depends on the stiffness
and the mass in the example of the spring)
The mere knowledge of the impulse response R(t) makes it possible to calculate the solution for any second member,
so that one does not need to know what the physical system is made of if one knows its impulse response : it could
be treated as a “black box”. The following vocabulary, inspired by the field of signal processing, is sometimes used :
— the physical system (spring+mass for example) is called linear system or filter
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— the second member of the equation is the input signal
— the solution y(t) to the differential equation is called response or output signal
— the relation y = F % R is called input—output relation.

and the behavior of the system can be schematized by the drawing below

AF(1) A R(1) A (1)

"1 "1 "1

Input signal Impulse response Output signal

We speak of causal system when the impulse response R(t) = 0 for ¢ < 0. In this case the variable ¢ designates time.
The physical meaning is quite simple to understand : imagine R(t < 0) # 0 in the spring example. An impulse
type force applied at time ¢ = 0 would then cause the mass to move (R(t) is the elongation of the spring) at t < 0
i.e. before force is applied. Such a system would violate the principle of causality.

2.3.3 Calculation of the impulse response : example of the spring
Let’s take the equation of the harmonic oscillator from the paragraph :

2" (t) + w?a(t) = F(t) (2.25)
The impulse response R(t) obeys the differential equation

R'(t) +w?R(t) = §(t) (2.26)

There are several methods to calculate R. We can perform a Fourier transformation of the previous equation,
which has the effect of transforming the differential equation into a simple linear equation, as we will see in the
next chapter.

We propose here a more traditional method (general solution of the equation without second member + particular
solution). As the d(t) of the second member is difficult to handle, we introduce the primitive G of the impulse
response :

G = / Rt (2.27)

with the condition G(t < 0) = 0 to respect causality. Then we integrate the equation with respect to time :

R'(t) + w? / R(t)dt = / 5(t)dt (2.28)

which also writes as
G (t) + w?G(t) = H(t) (2.29)
with H(t) the Heaviside distribution. For ¢ > 0 the equation is thus written
G'(t) +w*Gt) =1 (2.30)
which is easy to solve. The solution of the equation without second member is

Go(t) = A cos(wt) + B sin(wt) (2.31)

with A and B integration constants. A particular constant solution is G; = ﬁ The condition G(0) = 0 gives
A=—-2L sothat
w2

G(t) = %(1 — cos(wt)) + B sin(wt) (2.32)

The impulse response is the derivative of G. The constant B vanishes because of the condition R(0) = 0 (spring at
rest at ¢ < 0). We finally have, for ¢t > 0

1
R(t) = — sin(wt) (2.33)
w
and R(t) =0 for t < 0. So :

R(t) = Hf) sin(wt) (2.34)
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fx.y) d(x-a,y-b) fix-a,y-b)

FIGURE 2.4 — Property of translation of the convolution (Eq.[2.36) : a function f(x,y) (on the left) centered at the
origin is convolved by a Dirac impulse centered at (x = a,y = b). The result (on the right) is the shifted function
f(z —a,y —b) centered at (z = a,y = b).

F1GURE 2.5 — Tllustration of Eq. (a) gray-scale plot of a sum of 2D Dirac impulses with different amplitudes.
(b) gray-scale plot of the point-spread function f(z,y) (f(z,y) = 1 inside an octogonal domain, 0 elsewhere). (c)
result of the 2D convolution of the two functions. As predicted by Eq. the result is a sum of shifted PSFs
(each impulse of the sum is replaced by the PSF, with the same amplitude A,,) When PSFs overlap, the result is
the sum of overlapping terms.

2.4 2D convolution

The 2D convolution between two functions of (z,y) is

W) = (o) = [[ T @y gl — oy — o) dy (2.35)

Note that we use the same symbol * for 1D and 2D convolutions, but the two operations are different (single
integral for 1D, double integral for 2D). The 2D impulse response is sometimes denoted as “point-spread function”.
The 2D convolution has a lot of applications in image processing; for example convolving an image f(z,y) by a
2D rectangle function will blur the image.

Most of the properties apply to 2D convolution. In particular this one :

f(z,y)*6(x —a,y —b) = f(zr —a,y —b) (2.36)

which is illustrated by the Figure A translation of a function inside the (z,y) plane can be expressed as a
convolution by a shifted 2D Dirac impulse. This is the origin of the name “point-spread function” (PSF) for the
impulse response at 2D (a 2D Dirac impulse is a infinitely sharp point in the (z,y) plane, and the convolution
transforms this point into a larger function f).

A corollar of this property is :

f(i,y) * ZAn(S(l — T, Y — yn) = ZAnf(L —Tn,Y — yn) (237)

which is illustrated by Figs. and
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FIGURE 2.6 — Image of portion of sky with a defocused optics : each star has the shape of a small disc, with a
central obstruction. This is a typical illustration of a 2D convolution as in Fig. The perfect image f(z,y) is
composed of a sum of 2D impulses (ideal image of a point-source). It is convolved by a Point-Spread function g(z, y)
which is the small disc (two examples are in the red boxes). The fuzzy objet on the top right is the Dumbbell
nebula, which is also convolved by the PSF (so that every point of the nebula is replaced by the PSF, resulting in
a blurred image).



Chapter 3

Fourier transform

3.1 Definition

3.1.1 Definition

Let f be a function of real variable with real or complex values :

f: R - C
z = f(x)

We call Fourier transform (or FT) of f the integral

flv) = [ - f(t) e 2t dt (3.2)

with v real. This integral exists if f is integrable on R. We speak of direct space to describe f(t), and of Fourier
space to describe f(r). We will sometimes use the following notations :

f=Flf] =FT[f] (3-3)

ou

As for the convolution it is a functional operation and the writing f(v) = F,[f(t)] is incorrect...but we use it
anyway for convenience and/or habit.
The quantity v is called conjugate variable of t. Its dimension is inverse of that of ¢

v =1 (3.5)

so if ¢ is a time (in seconds), v is a frequency (in seconds™!). And if ¢ is a position (in meters), then v is a spatial
frequency (in meters~!). Thus the FT is a mathematical operation making it possible to transform a function
depending on time into a function depending on the frequency.

It should be noted that other definitions of the Fourier transform exist. For example :

f = [ T pe) et

Flw) = \/12?/00 F(t) et dt

The passage from one definition to the other is done simply by a change of variable. Here we will work exclusively
with the definition of the equation

3.1.2 Fourier transform of real-valued functions

We are interested in the case of real-valued functions f of a real variable t. We will distinguish the case of even
and odd functions :

24
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Case of a real and even function f These functions verify f(¢) = f(—t). In this case its f is written as
follows :

o = [ T py et

0 ')
/ f(t) 6—21',7th dt + / f(t) e—2i7rl/t dt
—o00 0

J variable change y = —t
f(_ ) 217rm/d / f —2171’1/75 dt

+oo

f( ) 2iTry d / f —2z7rut dt

/ f 2z7n/y d / f —27.7'rut dt

2/0 f (@) cos(2mut) dt

(3.6)
This last integral is called cosine transform. In particular, it has the following property :
f real and even <= f real and even
Case of a real and odd function f which satisfies f(¢t) = —f(—t). The same reasoning allows us to write
—2i /000 f(t) sin(2mvt) dt (3.7)

The integral 2 fooo () sin(2mvt) dt is called sine transform. It is also shown that

f real and odd <— f imaginary and odd

Case of any real function f : it always breaks down into an even (f,) and an odd part (f;) :

F&) = fp(t) + fult) (3-8)

with 2f,(t) = f(t)+ f(—t) and 2f;(t) = f(¢) — f(—t). The Fourier transform of real functions satisfies the following
property (we say that they are hermitian)

f real <= f has an even real part and an odd imaginary part

which can be written in the following compact way

f=v)=fw) (3.9)

with the notation Z = complex conjugate of z.

3.1.3 Examples
Rectangle function

Let f(t) = II(t). Its FT writes as :

flv) = /Oo TI(t) e~ 2™ gt

— o0
1
2 ) 1 ] 1
— —2imvt dt = — —2imvt] 2
/_ L e 1%
sin(7v)

. (3.10)
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Fonction porte Sinus cardinal
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-1.5 -1 -0.5 0 0.5 1 1.5

FIGURE 3.1 — Rectangle function (left) and its Fourier transform (right)

This function Sin;:'/) is knows as cardinal sine and denoted sinc(wu) It has the property of vanishing for integer

v, hence the name of cardinal. We will remember that

(3.11)

f(t) =1(t) < f(v) = sinc(av)

The graph of the two functions f and f is shown in figure Note that f (v) is here a real and even function since
f(t) is real and even.

Gaussian function

Let f(t) = e ™. Its FT writes as :
f(V) / e—7‘rt2 e—2i7‘rut dt

— 0o

1l introduce the beginning of the square (t + iv)?
e’ / et gt (3.12)

oo

The calculation of the integral / e~ ™(t+1)% ig done by the method of residues, we show that it is equal to 1. So

— 00

it comes that f(v) = e=™”. We find the known result that the FT of a Gaussian is a Gaussian. We will remember

that

(3.13)

O O

Laplace function
Consider the function f(t) = e~ I*|. This is a function known as Laplace’s law in the domain of probability. Its F'T

is written :

]?(V) — / e—\tl e 2imvt 1y

— 00
O . © .

_ / et—2z7rut dt _|_ / e—t—217rut

— o0 0
B 11
14 2y 1 — 2inv

2

= — 3.14

14 4722 ( )

1. The definition we will take here for the cardinal sine is sinc(z) = % Another often used definition including the number 7 is :

sinc(z) = 731“75;”0)

2. More precisely Laplace’s law is the function p(t) = %e"t‘, whose integral is 1



CHAPTER 3. FOURIER TRANSFORM 27

Fonction Transformee de Fourier
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FIGURE 3.2 — Function f(t) = e~ !l (left) and its Fourier transform (right)

This function is a Lorentzian Its graph is represented in figure [3.2]

Dirac impulse

Let f(t) =4(t). Its FT writes as
flv)y = /DO 5(t) e 2t gt

use property f(¢)o(t) = f(0)d(t)
/ Sty dt =1 (3.15)

<—

We obtain the result that f(v) is 1 whatever v, and we will write it : f(v) = 1(v). The converse is true as we will
see in paragraph We will retain that

(v) (3.16)

=
(1) =

3.2 Properties of the Fourier transform

3.2.1 Linearity

It is very easy to show that the Fourier transform is a linear operation, i.e. :
— For two functions f et g, we have F[f + g] = F[f] + Flg]
— For a function f and a constant A, we have F[Af] = AF[f]

3.2.2 Change of sign and conjugation
Change of sign : FT of f(—t)

It is written as :

Ao = [ T f(ety e ay

/_Oo f@) et tar = f(—v) (3.17)

Note that a reversal of the ¢ axis (change ¢ — —t) results in a reversal of the v axis :

f=t) L f-v) (3.18)
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Conjugation : FT of f(t)

It writes as :

F [m} — [ m e—2i7r1/t dt
= / h flt)erzmtdt = f(—v) (3.19)
3.2.3 Value at origin f(0)
It writes as : o ~
fo) = / F(#) 20t g — / () dt (3.20)

Retain that :

’the integral of a function is the value of its FT at 0 ‘

3.2.4 Change of scale

Consider a real constant a # 0 and a function f. We are interested in the FT of f (%) It is written

Q)] - L) e

l  variable change y = t/a (caution a may be negative)

a / F@) e ™ dy = o] flav)

(3.21)

Thus a dilation of the ¢ axis (change t — t/a) results in a compression of the v axis (change v — av). This
important property is illustrated in figure We will retain that

1(2) 5 lalfa) (3.22)

a

We can also remember the following sentence :

< A function large in the direct space is narrow in the Fourier space. >

Consequence : FT of 1(t) Let the Gaussian function g.(t) = exp —(et)? with € a positive real. Its FT is :

ge(v) = % exp —7 (%)2 (3.23)

When € — 0, the function g. tends towards 1 while its FT gy is a function whose width tends towards 0, height
(value at the origin) becomes infinite and whose integral is 1 (it is easy to show that [*_g.(v) dv = [*_g1(v) dv =

ffooo g1(t) dt = g1(0) = 1). We remark that gy has the characteristics of a ¢ distribution as defined in paragraph
and can thus write that §.(v) tends to 6(v) when ¢ — 0. We will retain the following function/transform palr :

F) =1(t) < f(v) =) (3.24)

3.2.5 Translation

Consider a real constant a and a function f. We want to calculate the FT of f(t + a) :

Firesal = [ fara et
variable change y =t + a
/ f(y) e—2i7r(y—a)1/ dy _ e2i7rau f(l/)

<—

(3.25)
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Fonction Transformee de Fourier
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f(t) I’ ‘\ fA(v)
09} —— f(t/a) avec a=2 |4 181 . [t la] fA(av) [
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FIGURE 3.3 — Illustration of the scaling property. On the left a Gaussian function f(¢) (blue) and the same function
f(t/a) dilated by a factor a = 2 (red). On the right, the respective FTs : note the inversion of the proportions (the
dilation in direct space has become a compression in Fourier space). We also note the value at the origin in Fourier

space, higher for the red curve (f(0) is the integral of f).

2imav in Fourier

Hence a translation of a along the t axis corresponds to a multiplication by a linear phase term e
space. We will retain the property
ft+a) S e f) (3.26)

Thus when performing a translation, the modulus of the Fourier transform is unchanged. Only the phase contains
the information on this translation (addition of a linear contribution ¢(u) = 27ua to the phase of the TF of f(t)).
Figure shows an example in the case where f(t) is a Gaussian.

3.2.6 Product by a phase term 270!

Consider a real constant vy and a function f. We are interested in the FT of f(t) e2™0!, The calculation gives

f 1/—1/0)

Flrg ) = [ et
(

(3.27)

A multiplication by a linear phase term of frequency vy in direct space results in a translation of —1y in Fourier
space. This is the symmetrical property of that described in the previous paragraph (beware the - sign). We
therefore retain these two properties :

f(t+a) L f)erime (3.28)
f(t) et+2imrot £> f(ll _ VO)

3.2.7 Inverse Fourier transform
The problem is the following : how to obtain f(¢) when we know f(v)? It is the expression of the inverse FT that

we are going to establish here. For this we go through a first step below :

Double Fourier transform

It will be denoted f and is written as the FT of f The variables used will be : t for f, u for f and tq for f (it
should be noted that the dimension of ¢ and ¢; is the same while that of w is the inverse of that of ¢ and ¢;). It
comes
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FT realpart: exp(- = vz).cos(21w a) FT imaginary part : exp(- =© v2).sin(2nv a)
1 A
(o) A 0.5f )
0.8 [
5 06 0.25
Function f(t)=exp(-r (t+a)°) with a=1/2 : [
1 | 0
@ 0.4
0.2 / | -0.25
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0.4 FT modulus: exp(st v2) FT phase : 2nv a
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FIGURE 3.4 — Effect of a change of origin (translation) on the Fourier transform of a Gaussian. (a) : Gaussian

function translated by a quantity a = 3 in direct space. (b) and (c) : real and imaginary parts of the FT. (d) :

module of the FT, independent of the shift a. (e) : phase of the FT, it is a straight line with slope 2wa. The slope
is positive if the function is shifted to the left, negative if the function is shifted to the right.

f(t1)

6—217rt1 v dy

-

} swap integrals on t and v

- U

FT of 1(v) for the value t + t;

f(t) e—2i7r1/t dt

e 2mvlith) dy] f(t) dt

o0

- Ot +t —t1) dt
(f(t)o(t—a)=f(a)d(t—a)) /tzfoo ( 1) f(=t1)

= /jo 6(t+t1) f(t) dt

f(=t1)

So the double Fourier transform gives the original function, with a sign change of the variable ¢ (axis reversal). We
will retain that :

(3.29)

i) = f(-1)
A (3.30)
) 5 fv) D f(-t)
Inverse Fourier transform
We have just seen that the TF of f is f(=t):
f) & -1 (3.31)
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The Fourier integral relating here to the variable ». We combine this result on the double Fourier transformation
with the change of sign property seen in the paragraph It comes

f(=v) = f(t) (3.32)
exand this relation : -
/ f(—l/) e~ 2Tt 1, f(t) (333)
The change of variable v — —v allows to write
ft) = / h fw) et ™t qy = F1f(v)] (3.34)

This equality links f (v) to f(t) : this is the expression of the inverse FT that we are looking for. It is very similar
to that of the direct FT, the difference being the sign of the term 2imvt in the exponential. We also see that

— For an even real function, inverse FT = FT
— For an odd real function, inverse FT = -FT

3.2.8 Physical significance of FT

This significance is found in the expression for the inverse FT, which allows us to write a function f as a continuous
sum of terms et2™* which we will name < harmonic components >

o0
@) = / f(v)dv o+2imut (3.35)
oo — . ——
weighting fac- harmonic
tor components

These harmonic components et2™* are trigonometric functions of frequency v and are the complex equivalent of

sinusoids. This is why we sometimes say that any function f(¢) (admitting a FT) can be written as a continuous
sum of sinusoids of frequencies v ranging from —oo to 400 . The term f (v) represents the weight of the harmonic
component of frequency v in the expansion of f, and this is the physical meaning of the Fourier transform (we
sometimes speak of frequency spectrum to denote FT). There are special cases that we will encounter a little later :

— The even real functions, which are written as a sum of cosines

— The even odd functions, which are written as a sum of sines

— Periodic functions, which are written as a discrete (and not continuous) sum of harmonic components

— Simple trigonometric functions like sin?(t) which are written with a finite number of harmonic components

Example of a cosine

Let f(t) = cos(2mpt). Its frequency is 1. This cosine is written as the sum of two complex exponentials

1 % 1 .
t) = Ze it 76—217ruot 3.36
Fl#) = 5™+ 2 (3.36)
which in indeed an expansion into a sum of harmonic components analogous to the equation [3.35] There are only
two harmonics in the cosine : that of frequency +1¢ and that of frequency —vg. Each has an identical weight 1/2.
This information is found in the Fourier transform of f. To calculate it, we use the result of the paragraph |3.2.6)

g(t) eQim/ot i f](l/ _ 1/0)

avec g(t) = 1(t). It comes :

flv) = %5(1/ —1) + %(5(1/—&— Vo) (3.37)

The FT of a cosine of frequency vy is the sum of two § distributions, centered at +v4. It is zero for any other value
of v : we deduce that the cosine contains no frequency other than 4y in its Fourier expansion. It is even : this is
why the two frequencies £1 have the same weight (%) in the Fourier expansion of f.
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Case of a real and even function

Let f be a real and even function, admitting an FT f which is also real and even. It is easy to show that the
equation can be written

o0
£t) =2 / F(v) cos(2mut) dv (3.38)
0
A real and even function is thus written as a continuous sum of cosines at all frequencies v between 0 and oo,

weighted by f (v). In other words, by adding a large number (ideally an infinity) of cosines with the right weights,
one can construct any function (provided it admits a FT).

Example of a rectangle function f(¢) = II(¢). Its FT writes f(v) = sinc(rv). The equation allows to
write

1) = 2 / sinc(mv) cos(2mvt) dv (3.39)
0
By means of a computer, it is easy to approximate this integral by Riemann sum
M
() ~ 2 Z sinc(mvy,) cos(2my,t) dv (3.40)
n=0

with dv a frequency step and v, = ndv the sampled values of the frequency v. M is a large number, ideally infinite
for the Riemann series, but if one wants to make a numerical calculation it is necessary to fix a limit value.

The figure [3.5[shows how the rectangle function is constructed when we sum a few terms of the series. In particular
the graph (c4), obtained as a sum of only 4 terms (v, = 0,0.5,1.5,2.5) already evokes the form of the rectangle
function. Another example is shown in figure with a much higher number of terms (up to M = 10000) and a
tighter dv frequency sampling. It is interesting to observe the convergence towards the rectangle function as M
increases. It can be seen that the flat parts are fairly quickly reconstructed while oscillations are observed in the
vicinity of the discontinuities (Gibbs phenomenon). These oscillations disappear when M — oc.

3.2.9 Derivation

Consider a function f admitting a FT (and therefore integrable on R). It is written as the inverse FT of f , Le.

1w = [ jwema

=—00
4 derive with respect to ¢
d d [ . .
GO = 5[ fmema
| derive under the integral sign [ (Leibniz rule)

_ /V f(l/) %e%‘mjt dv

=—0C

el ~ .
= / f) 2imv 2™ dy

= F [2imwf(v)] (3.41)

We will retain the propoerty :

) L 2irvf) (3.42)

This translates into the idea that a derivative corresponds to an increase in the weight of high frequencies (large
values of |v|). We talk about high pass filtering and we will develop this idea in the chapter dealing with filtering.
From the previous equation we can deduce the result below, sometimes useful for certain calculations :

tf(t) = —5——[f(v)] (3.43)
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FIGURE 3.5 — Approximation of a rectangle function f(¢) = II(¢) as sum of cosines (equation [3.40)). (a) : FT of the
rectangle function sinc(wv). The circles correspond to the values of v = 0,0.5,1.5, 2.5 used in the sum. (by) to (by) :
term sinc(wv) cos(2nvt) for v = 0,0.5,1.5,2.5. (¢1) to (cq) : sum of the terms corresponding to sinc(wv) cos(2nvt)
for v =0, v = 0,0.5, v = 0,0.5,1.5, and v = 0,0.5, 1.5, 2.5.
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FIGURE 3.6 — Approximation of a rectangle function f(¢) = II(¢) by the sum of the series (eq. [3.40) with v = 0.01.
(a) : FT of the rectangle function sinc(nv). (b) to (e) : calculation of the series for 4 maximum values vy; of v
corresponding to vy = 5,10, 50,100 (i.e. an upper bound M = 500, 1000, 5000, 10000 for n). The vertical lines of
the graph (a) correspond to the 4 values of vy;.
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Similarly, the FT of the primitive of f is written

1

3.44
2Ty ( )

/ [yt 5 )

which corresponds to an attenuation of high frequencies (low-pass filtering).

3.2.10 FT of a convolution and a product

Let f and g be two functions of the same
h(t) =

The FT of h writes

variable ¢, and h their convolution product

oo

/t,:_oo

h(t) e—2'é7rut dt

(3.45)

[f *g](t) ft) gt =) dt

/OO
t=—o00

/ F(t) gt —t)dt e ™ dt
—o0 Jt/'=—o0

t=

swap of integrals

RGN

[
i [~

g(v) . f(v)

g(t _ t/) e—2im/t dt dt/

FT of g(t—t)
f(t/) 672i7rut' dt'

(3.46)

We have shown the well-known result that the FT of a convolution is a simple product of individual transforms.
Let us now show the converse property, i.e. the FT of a product of functions is the convolution of the transforms :

FLf®)-9(t)]

We will retain the following properties :

3.2.11 FT of causal function

Ia

write g(t) as inverse FT of §(v/)
g

Joo
frt ]

f(t) g(t) e ™" dt

— 00

oo

.y .
(l//) e2wru t d]// e 2imvt dt

f(t) 6721'77(1/71/)15 dt dv/

9

g+ flv) (347)
F poa

S > 79 o) (3.48)

gl 5 F0).g0)

A causal function f(¢) has the property of being zero for ¢ < 0, and satisfies f(t) = f(¢).H(¢t) with H the Heaviside

function.
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FIGURE 3.7 — Heaviside unit step (left) and its Fourier transform (right).
FT of H(t)
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We use the relation (FT of the primitive of a function) that we apply to f(¢) = 6(t). The antiderivative of §

is the Heaviside step multiplied by an integration constant. We will choose here the constant equal to —

to obtain the following odd primitive :

primitive

and since I is odd it verifies

. 1 . 1
W)= 5! V) = S
So : .
F(v) =5 forv#0
Fr)=0 forv =10

1

57 deprived of its singularity at 0, we will denote it

Fv)=vp |:2i:7[TV:|

This is the function

the term vp for principal value. It therefore comes, since H(t) = F(t) + 3

A = %5(1/) + vp [%'H

5 in order

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

It is the Heaviside step FT, which has an even real part and an odd imaginary part (general property of FTs of
real functions). Its graph is represented in figure We can deduce the FT from the sign function defined by

1 ift>0
sgn(t)= 0 ift=0
-1 ift<0

2, sen(v) = vp {1}

1TV

(3.55)
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FT of a causal function — Hilbert transform

Let f be a causal function satisfying f(t) = f(t).H(t). We have :

fw)y = FIf@)H®) = f) * Hv)

1. A 1
= 370 +50) « |5
1. i A 1
~ 300~ Sw[iw) « 2]
(3.56)
The principal value of the convolution integral of f(v) by % is the limit € — 0 of
A 1 —€ £y —oo £l 1
vp [f(y) * } = M dv'  + / L,V) dv' (3.57)
% . % . TV

In the following we will omit the explicit writing of the principal value and assume an extension by continuity in
0. It comes :

f)=—i fv)* — (3.58)

v

which is the equivalent in Fourier space of the relation f(t) = f(t).H(t). The quantity f(v)* - is called Hilbert

T

transform of f .

3.2.12 How to calculate a FT

The FT is defined by an integral (eq. but it is generally not necessary to calculate it. For example let the
function

f(t) = cos(3t) exp —m(t — to)? (3.59)

with to real. f is therefore the product of a function fi(t) = cos(3t) by a Gaussian fa(t) = exp —m(t — to)%. To
calculate its TF, we use the property [3.48] to write

fw)=FHE) * fo) (3.60)
To calculate f; (v), we decompose the sine into the sum of two exponentials :
filt) = %eg“ + %6*3” (3.61)
and we use the property [3.27] to deduce
fl(v)=;6<v+;>+;6<u—;r) (3.62)
To calculate fo (v) we combine the translation property with the FT of the Gaussian (eq. . It comes
falv) = ™" e~ 2imvio (3.63)
And finally, we apply the property f(z)xd(x —a) = f(z — a) to obtain
flv) = g emlomd) g2l o L emnlordn)” oo kin(vr ) (364

This example illustrates the importance of having a form grouping the known FTs and the essential properties.
This form is given in the appendix.
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FIGURE 3.8 — Representation of a 2D sinudoidal function f(x,y) = cos(275.p) = cos(2m(uz +vy)). (a) : perpective
plot. (b) : grayscale plot. The frequency vector & = (u,v) has been drawn on the right plot; it is perpendicular to

the ridge lines of the function, its modulus is the frequency of the oscillations measured along the unit vector &.

Its components are u = %, v = % with a and b the periods in the z and y directions.

3.3 Two dimensionnal Fourier transform

3.3.1 Definition

The 2D Fourier transform of a function of two variables f(x,y) is defined as

flu,v) = / [ h f(x,y) e 2muatoy) g gy (3.65)

The variables u and v are spatial frequencies associated to the space variables x and y. They define, in the (u,v)
plane, a “spatial frequency vector” & = ‘ Z (see Fig. . As for the 1D Fourier transform, the idea is that a

function f(x,y) can be expressed as a sum of 2D complex sinusoids of any period and any orientation.
The 2D inverse Fourier transform is

Fay) = / /_ " fluyv) P gy dy (3.66)

3.3.2 Specific properties for 2D Fourier transform

Separable functions : if a function h(z,y) is the product of two functions of one variable f(z) and g(y), then
its 2D Fourier transform is also a separable function, i.e.

h(zy) = f(2).9(y) T hluv) = fu).§(v) (3.67)

This property must not to be confused with the Fourier transform of a product of functions of the same
variables (Eq. [3.48) : here the variables for f and g are different, and the 2D transform is a double integral.

Radial functions of the type f(z,y) = f(p) with p = /22 + y2 : the 2D Fourier transform f(u,v) is also a
radial function F(q) with ¢ = vu? + v2. Tt takes the following form known as Hankel transform :

F(q) = f(u,v) = /OOO 2mp f(p) Jo(2mqp) dp (3.68)

where Jy(z) is the zero order Bessel function. The Hankel transform f(p) — F(q) is not to be confused
with the 1D Fourier transform (Eq. .

3.4 Transfer function and filtering

3.4.1 Example : RC circuit

We consider the RC circuit of the figure A generator delivers an alternating voltage z(t) in a circuit made
up of a resistor R and a capacitor C' connected in series. The voltage y(t) is measured across the terminals of the
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x(1) () C— |y

FIGURE 3.9 — RC circuit. x(¢) is the input voltage, y(t) is the voltage measured across the capacitor.

capacitor. Using the vocabulary presented in paragraph [2.3.2} x(t) will be called the “input signal” and y(t) the
“output signal”.

The voltage law makes it possible to write the differential equation to which the charge ¢(t) of the capacitor
satisfies :

dg  q _
let y = &, it comes : ;
RC dit’ oy =a(t) (3.70)

It is a linear differential equation whose solution y(¢) is written as the convolution
y(t) = x(t) = R(t) (3.71)

with R(t) the impulse response, as we saw in paragraph Another way to show this is to calculate the FT of
the differential equation :
RC 2imv §(v) + §(v) = &(v) (3.72)

The Fourier transformation made it possible to transform the differential equation into a linear equation. the
calculation of §(v) is immediate :

N R 1
I =20) - o Re (3.73)
and setting
. 1
k() = 1+ 2imv RC (3.74)
we make g appear as the product of two quantities
4(v) = #(v) .R(v) (3.75)

This relation between the input and output signals in the Fourier space is called linear filtering relation. The output
signal y(t) is thus also named filtered signal. By inverse FT we find the equation We can also calculate R(t)lﬂ :

R() = s HU0) exp—7is (3.76)
The quantity R(l/) is called transfer function. This is the FT of the impulse response. And like the impulse response,
it only depends on the characteristics of the RC circuit (resistance R and capacitance C) and not on the input
voltage z(t). Its graph (real/imaginary parts, modulus and phase) is represented in figure
Another representation in logarithmic scale (for v > 0) is shown in figure This representation widely used
in the field of electronics is known as Bode diagram. The modulus of R(v) is converted into decibels (dB) by the
formula

G(v) = 20 logo(|R(v)]) (3.77)

so that a drop of a factor 10 of | R(v)| results in a loss of 20 dB. G(v) is sometimes called “gain”. This representation
is convenient because it shows two different regimes for the behavior of G :

— G(v) is constant for || < 7, its value is 0

— G(v) is a straight line with negative slope (often expressed in decibels per decade) for [v| > =

3. The calculation is easy if we have previously calculated the FT of H(t) exp(—t) with the Fourier integral.
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FIGURE 3.11 — Bode diagram of the transfer function R(v) of the RC circuit for RC' = 1. Top : gain G(v) =
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Physical significance of the transfer function
The physical significance of this transfer function is easy to understand when the input voltage x(t) is sinusoidal
with frequency vy, for example

z(t) = zg cos(2muyt) (3.78)
In this case Z(v) is the sum of two ¢ distributions :

#(v) = %[5@ — 1) + 0(v + 1)] (3.79)

The filtering corresponding to the equation allows to write g(v) as a sum of two distributions §

§(v) = ZR(v0) 8 = 10) + R(=10)d(v + o)) (3.80)

and we obtain the output signal y(¢) by inverse FT, using the property R(—VO) = R(z/o)
y(t) = zo | R()| cos(2mrpt + o) (3.81)

with ¢¢ the phase of 1:2(1/0). Retain that :

When the input signal is a sinusoid of frequency vy, the output signal is also a sinusoid,
— with the same frequency vy, R
— whose amplitude has been multiplied by |R(vp)|,

— which is out of phase by an amount ¢y = arg [E(uo)}

The role of the modulus transfer function is comparable to that of a equalizer in a stereo system : it acts as an
attenuation coefficient for the signal at the frequency vg. The phase of the transfer function acts for its part by
a phase shift of this signal. The Bode diagram in figure shows that a low frequency signal v < % will be
almost unchanged (y(t) ~ z(t)) , the RC circuit has no effect on low frequency signals. On the other hand at
high frequency v > %, the output signal will have a low amplitude, which tends towards 0 as v increases. Such
filtering is therefore called < low-pass » because it “passes through” low frequencies and blocks high frequencies.

See illustration in figure [3:12}

3.4.2 Some definitions
Stationary linear systems

We consider a physical system which links an input signal z to an output signal y by an “input-output” relation.
For example :
— The RC circuit of the previous paragraph : x is the generator voltage, y the voltage measured across the
capacitor, the input-output relationship is a convolution
— The spring of paragraph : x is the force exerted on the spring, y is its elongation. The input-output
relationship is also a convolution
— A microphone that transforms a sound signal (z is the pressure exerted on the membrane of the microphone)
into an electrical signal y
— A camera which forms the image I(z’,y’) of a light source of intensity Io(z’,y’) at a point of coordinates
z',y" in the plane. The relation between Iy and I is an input-output relation, between two functions of two
variables.
A common point of the previous examples is that they make it possible to carry out a measurement of the input
signal x which is sometimes unknown (in the example of the microphone the air pressure on the membrane is
unknown). The measured quantity is y. The relation between x and y depends on the physics of the system (in
the case of the spring, the fundamental relation of dynamics makes it possible to obtain it). This relation takes the
form of a convolution in the case of particular systems called linear and stationary.
A system is said to be linear if its response to a linear combination of input signals is the linear combination of
output signals :
Input signal : a3 x1 +asxs = Output signal : a; y1 + az ys (3.82)
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FIGURE 3.12 — Illustration of the effect of filtering a sinusoidal signal z(t) by an RC circuit (with RC = 1). (a)
input signal z(t) = cos(2mvpt) with vy = 0.5. (b) representations in Fourier space of the transfer function (module)
and of Z(v) (sum of two Diracs). (c) filtered signal y(¢) which is a sinusoid of frequency vy, damped and out of
phase. (d), (e), (f) : same thing with vy = 3 There is a greater attenuation for this higher frequency, as well as a
phase shift of almost 7/2 (as predicted by the Bode diagram).

with y; (resp. y2) the response to the input signal 21 (resp. x2), and a; and as constants.

A system is said to be stationary if its characteristics are invariant under translation, whether in time (in the
case of time-dependent input and output signals) or in space (in the case of signals depending on space variables
like intensity in an image). In this case a translation of the input signal results in an identical translation of the
output signal :

Input signal : z(t) = Output signal : y(t)

Input signal : z(t —ty) = Output signal : y(t — to) (3.83)

with ¢ the variable on which the input and output signals depend and ¢, the translation.

It is easy to show that the input-output relation of such a system is a convolution by an impulse response R(t).
Indeed z(t) can be written as a continuous sum of ¢ distributions

z(t) = z(t)x8(t) = /_Oo (') 5(t —t')dt’ (3.84)

The response of the system to an input signal §(t —t') is R(¢t —t’) if the system is stationary. And since the system
is also linear, its response to a sum of distributions J is written

Input signal : zod(t—to)+x10(t—t1)+x20(t—t2)... == Output signal : yoR(t—to)+y1 R(t—t1)+z2R(t—12) ...
(3.85)

or,
Input signal : Z xn0(t —t,) = Output signal : Z xnR(t —t,) (3.86)

or again, going to the continuous form

o oo

z(t')dt' 6(t —t') = Output signal : / z(t)dt' R(t —t') (3.87)

—0o0

Input signal : /

—00
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FIGURE 3.13 — Low-pass filtering of a signal. (a) input signal z(t) = a; exp(—t?) + ag cos(27vpt) with vy = 3,
a; = ﬁ and ap = 0.05. (b) representations in Fourier space of Z(v) (sum of a Gaussian centered at v = 0 and of

two Diracs coming from the term ag cos(2mvgt)). The transfer function is shown in dotted lines. (c) filtered signal
y(t) in which the cosine term has almost completely disappeared.

Thus, for a stationary linear system :

Input signal : x(t) == Output signal : y(t) = z(t) * R(t) ‘ (3.88)

low pass filtering

We consider a stationary linear impulse response system R(t), which connects an input signal z(¢) to an output
signal y(t). The relation between & and g in Fourier space is written

§(v) = R(v) ¢(v) (3.89)

We say that this filtering is of the low-pass type if the transfer function (its modulus) tends towards O in the
distance, i.e.
|R(v)] ——— 0 (3.90)
|v]|—ro0
This concretely means that the high frequency harmonic components in the signal z(t) are attenuated by this type
of filtering. The figure shows an example of low pass filtering on a signal x(¢) composed of a Gaussian and
a cosine : x(t) = aj exp(—t?) + ag cos(2mpt) with constants a; = # and ag = 0.05. The cosine frequency is

vy = 3. The transfer function is ]%(u) = exp (—%). It is equal to 1 near the origin and decreases very strongly

when |v| > 2.6 (we have R(2.6) ~ 0.01).

In Fourier space, Z(v) is the sum of three terms : a Gaussian of width v ~ 1 and two diracs at positions v = +£3.
The product of &(v) by R(v) has almost no effect on the Gaussian (R(r) ~ 1 over its entire width) but multiplies the
two diracs by R(3) ~ 3.107%. In direct space, the filtered signal is Writteny(t) ~ a; exp(—t2)+agR(3) cos(2mvpt).
We observe that the cosine term has almost disappeared.

In signal processing, low pass filtering is very useful to reduce noise

3.5 Correlations and power spectra

Throughout this paragraph we will assume that the functions with which we are working are square summable, i.e.

oo
/ |f(t)]* dt ot infinite (3.91)
—0o0

In physics we then speak of finite energy signals. Indeed the quantity |f(¢)|? often represents a power. For example
if f denotes an electric field, then |f|? is proportional to the electromagnetic power associated with f, and the

quantity fix;o |f(t)|? dt represents an energy.

4. The expression given for y(t) is an approximation which assumes that the transfer function is strictly equal to 1 over the entire
support of the Gaussian. The exact expression of y(¢) is much more complicated.
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3.5.1 Correlation functions
Cross-correlation

We call correlation function or cross-correlation of two signals f and g the following integral :

Crg(7) = /oo g(6) f(t+7)dt (3.92)

—00

It is easy to see that C't4 can be put in the form of a convolution product

Crg(r) =g * f-](=7) (3.93)

with f_(t) = f(—t). And we notice that when we permute the order of the functions f and g we obtain the following
identity

Cys(r) = Crg(=7) (3.94)
In the case of real and even signals, the cross-correlation of f and g is simply equal to the convolution product of
f by g.

Autocorrelation

When f and g are identical, we speak of autocorrelation function or simply autocorrelation of the signal f. The
autocorrelation is defined by the following integral :

Ci(r) = [ T+ dt = Cppr) (3.95)

and we have
Cy(r) =Cp(=7) (3.96)
that is, the autocorrelation has an even real part and an odd imaginary part (Hermitian function). The following
two properties are of interest :
— If f is real, then Cy is real pair
— If f is real pair then Cy = f * f

Example : Calculation of the autocorrelation of the sum of two Diracs. Consider the function 17 (t) = 6(t —t¢) +
d(t + to). It is real and even, so Cyy(7) = [1T * 17](7). It comes :

Cp (1) = 6(t — to) * 6(t — to) + 0(t +to) * 6(t +to) +2 0(t — to) * (¢ + to) (3.97)
1) (2) (6))
To calculate the 3 terms, we can use the property f(t) * d(t + a) = f(t + a). Then,
(1) = 8(t—to)*d(t —to) = o(t — 2to) (3.98)
(2) = 8(t+to)*0(t+tg) = (t+ 2tp)
(3) = 6(t—to) 8t +1o) = 5(1)
We obtain
Cy(r) =256(t) + 0(t — 2to) + 6(t + 2to) (3.99)

i.e. the autocorrelation of a sum of two Diracs is 3 Diracs : one at the origin and the two others at positions 42,
see figure

Application 1 : Measurement of the size of structures by autocorrelation

Consider the example of the signal f(¢) in figure e. It consists of a series of Gaussian pulses centered at
arbitrary positions. Each pulse has a width s. Graphs (a) to (d) of figure illustrate how the autocorrelation
of f(t) is calculated from its definition (eq. . This is the integral of the superposition of f(¢) (in red on the
graphs) and of f(t + 7) (in green). When the offset 7 increases, the overlap of the green and red signals decreases
and the autocorrelation decreases (graph (f)). The first minimum of the autocorrelation is reached when 7 = s,
allowing the measurement of s. This method is very effective, especially when the number of pulses is large, or
when the signal is noisy. In astronomy, it finds applications in speckle interferometry to measure the diameters of
stars, for example.
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C(t)

S (1+10) o(1—10)
b g

. T L

—1y t, t =21 0 2ty T

FIGURE 3.14 — On the left, the sum of two Diracs peaks with integral 1, centered at +ty3. On the right, the
autocorrelation is a symmetric function, sum of three Diracs centered at 0 and +2t3. The central peak has an
integral twice as large as the side peaks. The distance between the central peak and one of the side peaks is equal
to the separation between the Diracs in the function, i.e. 2tg.

(e) : Function f(t)
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FIGURE 3.15 — Example of calculation of an autocorrelation for a signal f(¢) made up of a series of pulses of
width s. Graphs (a) to (d) show the superposition of f(t) and f(t + 7) for 4 values of 7. The graph (f) shows the
autocorrelation as a function of 7. The red discs correspond to each of the cases (a) to (d).
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Intercorrelation of f and g
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U Max at rho=14 pixels
1r m‘/ 1
Il
[l
= 0.995[ | | 1
il I
© I
° [
£ 099 | 1
400 5 [ ,
|  0.085) LNA \w A ,"\ .
> 3001/ i Vol
2300/ - AUy, M) \A/ A
£ 500 | 0.98 \ \/ \
100 1 1 1 1 ) 1 0'975 1 1 1 1 1
0 100 200 300 400 500 600 0 50 100 150 200 250 300
pixels Spatial lag p (pixels)

FIGURE 3.16 — Top left : a solar spectrum with tilted lines. Bottom left : intensity profile of the spectrum on the
two lines f and g in dotted lines : they are shifted by a quantity A. On the right, the cross-correlation of f and g.

Application 2 : Measurement of a shift by cross-correlation

Another very useful application of correlation functions is the measurement of a shift between two identical signals,
one of which is shifted with respect to the other by a certain amount A. For example on the image of the solar
spectrum shown in fig. [3.16] the lines of the spectrum appear tilted. The graph at the bottom left represents the
intensity profile of two lines denoted f and g and shows the offset A. The graph on the right is the cross-correlation
Ctq(p) between the two lines f and ¢ : it shows a pronounced maximum for the value p = 14 pixels, which is
precisely the offset between f and g.

Other famous applications of correlation functions include optical character recognition on printed pages. The
principle is to calculate the cross-correlation of the image of the printed page with the image of each letter of the
alphabet. Cross-correlation maxima give the position of the letters.

Degree of coherence

Consider two summable square functions f and g. These functions verify the Schwarz inequality :

o0 2 o0 oo
‘ | T@ewa| < [T uwra. [l (3.100)
This inequality is the equivalent for functions of the vector relation
@l <l al .ol (3.101)
It allows to write )
[Cwwsesnal < [T uopa. [T gopa (3102)

ie.
[Crg(T)] <1/ C£(0).Cy(0) (3.103)

We call degree of coherence of the functions f and g the quantity

_ Crq(7)
Vg(T) = 50 0.0 (3.104)

with 0 < |y¢4(7)| < 1. This degree of coherence measures the similarity between two functions. It is 1 for 7 = 0
when f = g, and less than 1 otherwise.
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Note : this is the same idea as the correlation coefficient of two centered random variables X andY . Their covariance
is written (X.Y) and is the analogue of the cross-correlation in the case of functions. The Schwarz inequality is
written (X.Y) < oxoy with 0% = (X?) the variance of X. The correlation coefficient r of X and Y is

_(XY)
o OxXO0Oy
with v < 1. It is the analog of the degree of coherence in the case of functions.

3.5.2 Power spectra

We call cross-spectrum of two functions f and g the quantity

Wry(v) = f(v).6(v) (3.105)

and in the case where f = g, we call power spectrum of f the quantity

W) = |f(v)]? (3.106)

It represents the power spectral density, so that the elementary power contained in a spectral interval of width dv
around frequency v is dW = Wy (v)dv

3.5.3 Wiener-Khinchin and Parseval theorems
Wiener-Khinchin theorem

Let’s consider the cross-correlation of two two functions f and g :
Crg(1) = [ * [-](~=T) (3.107)
we calculate its Fourier transform :
FlCpo()] = [5=-S-1(~v) = f().5(v) (3.108)

after applying equations and Hence the important property, known as the Wiener-Khinchin theorem,
that the cross-spectrum of two functions is the FT of their cross-correlation :

| Wiv) = FICp,y(7)] | (3.109)
Similarly, when f = g, the power spectrum is the FT of the autocorrelation :
[ W) = FICs(7)] | (3.110)

Parseval’s theorem

It is also known as theorem of Parseval-Plancherel. Plancherel having generalized to all summable square functions
the result obtained by Parseval in the case of periodic functions (assuming a Fourier series expansion). To derive
it, we can invert equation [3.109]

Ciy(1) = F H{Wyy(v / Fw) gw) e* ™ dy (3.111)

expanding the quantity C,(7) we have

/Oo g(t) f(t+7) / F)g(v) e dy (3.112)

— 00

For 7 = 0 we then obtain the Parseval-Plancherel identity
[ roma - [ g

/ TP de = / TP v (3.114)

— 00 — 00

(3.113)

©>

and in the case where f =g :

This equality offers two expressions to write the total energy contained in the signal f. One as a time integral of the
power |f(t)|?, the other as a frequency integral. The two are equal and Parseval’s theorem is a way of expressing
the conservation of energy when going from the direct plane to the Fourier plane.
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Example of application : calculation of integrals Some integrals are easier to compute using Parseval’s
identity. For example, consider the function f(t) = sinc(wt). Its FT is f(v) = II(r). We can then calculate the
following integral, applying the equation3.114

/OO sinc(nt)? dt = /OO Ow)?dv = 1 (3.115)

— 00 — 00

while the direct calculation of [ fooo sinc(rt)? dt is much more difficult.

3.5.4 Uncertainty relations

We saw (eq. that f (%) EiN |la| f(av). This is the dilation-compression property (a wide function in direct
space is narrow in Fourier space). Hence the naive idea that the product of the widths in the two spaces must be
preserved.

This idea has applications in quantum physics. Thus, the localization of a particle (variable x) is defined by the
width of its probability density of presence |¢(z)|? with ¢ () the wave function . In Fourier space (using the variable
u=spatial frequency, or the variable k = 2ru=wave number) the quantity |1ﬁ(u)\2 has a width o, which is inversely
proportional to o,, so that

0y.0, = Cte

The momentum p of a particle is defined from the wave number k by the de Broglie relation p = hk = hu. We
then have 0,.0, = Cte, i.e. a well localized particle (0, weak) has an uncertain momentum (o, large). This is
Heisenberg’s uncertainty principle.

Similarly, we define an uncertainty relation associated with the widths of the L o)l 2
same function in direct space and in Fourier space. Consider a function f(t),
one way to define its width o; is to calculate the following second moment
(variance) :
o0
P VOl 16) _
t 00 .
Jo @) dt

~Y

and similarly in Fourier space :

)P

14
o2 ==l
oo )P dv

(3.117)

The application of the following three properties :
— Parseval’s identity,
— FT of t.f(t) (eq.
— Schwarz inequality
allows to show (cf Roddier, “Distributions and transformation of Fourier”) the following uncertainty relation :

1
0.0, > ypm (3.118)
T



Chapter 4

Fourier series — Sampling

4.1 Fourier series

In this paragraph, we will deal with periodic functions and their Fourier transforms. We will show that the frequency
spectra of periodic functions are composed of peaks (harmonic components). We will also show that any periodic
function can be put in the form of a discrete sum of sinusoids.

4.1.1 FT of the Dirac comb
Consider the Dirac comb ITI(#) of period 1. Its FT is calculated as follows :

Fv) = / III(t) e~ 2™ at (4.1)
= / e 2imvt Z o(t—n)dt = Z / e 2™ §(t — ) dt
— Z 6721'771/77,

F(v) appears as a series. It has the following properties :

— F'is a periodic function of period 1 (changing v — v+ 1 does not imaginary
change F(v)). This makes it possible to reduce its study to the s
interval [—3, 1[.

— When v # 0, we notice that F(v) is the sum of an infinity of \
complex numbers of modulus 1 (the sketch on the right shows

the addition of the Fresnel vectors in the plane complex). These ‘7% real

numbers cancel out two by two and the sum is zero. We thus have s
Fv)=0 Vv #0.
— Lorsque v = 0, la série diverge et tend vers 'infini.

This gives it the appearance of a Dirac comb of period 1. We will show that this is the case, by establishing an
approximate expression of F(v) near zero. We first introduce the function

N

Fy(v)= Y e ™ (4.2)

n=—N

with N integer, which tends to F(v) when N — oo. This function can be written in a more compact form using
the formula for the sum of a geometric series of common ratio g :
N
1 —gV+1
Z " = 7 (4.3)
l—q
n=0

49
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It comes :
1— 672i7r1/(N+1) 1— e27,'71'1/(N+1)

FN(V) = 1— e—2i7TV + 1— €2i7r1/ -1 (44)

which takes the for, using the relation 1 — e™2% = 2isin(z) e~ :
e—iTrl/N Sln[(N + 1)71-1/] + eiTrl/N Sln[(N + 1)7TV]

sin(7v) sin(7v)

Fyn(v) = —1 (4.5)

S0 :
sin[(N + 1)mv]
F =2 N)y———— -1 4.6
() = 2cos(m) T (4.6)
When N — oo, N+ 1~ N and sin[(N + 1)mv] ~ sin(nvN). The trigonometric identity sin(2z) = 2sinx cosx
allows to simplify Fy(v) in
sin(2rvN)

Fy(v) = sin(mv)

-1 (4.7)
The numerator has a period of %, which becomes small as N becomes large (rapid oscillations). Near the origin,
the denominator simplifies : sin(7v) ~ wv. It comes

sin(27vN)

Fy(v) ~ -

— 1 = 2Nsinc(2avN) — 1 ~ 2Nsinc(27vN) (4.8)
The function Fy behaves like a cardinal sine whose amplitude tends to infinity and width to 0. By setting € = ﬁ,
we see that F has the form % g (%) with g the function sinc(7v) with integral 1. This form was encountered in
paragraph we showed that its limit when ¢ — 0 is the distribution §(v).

In summary, the function F(v), Fourier transform of the comb, is periodic of period 1, and equals §(v) in the

interval [—3, £[. It is therefore a comb of period 1, and we can write :
F
mi(¢) — I(v) (4.9)
Similarly, the FT of a comb of period T is
G Ly m(Tv) (4.10)

4.1.2 Poisson summation formula

Let f be a periodic function of period T as in the example in figure It is the repetition of a pattern ¢(t) such

that 0 i -
o= | 1) et (a1

or, in more compact ¢(t) = f(t) II(%), the rectangle II(%) ensuring that the pattern vanishes outside the interval

[—%, %[ The pattern is also called main period. f can therefore be written as a sum of patterns centered on the

values of ¢ that are multiples of the period :

fy= > o¢(t—nT)

7(6) = o(t) * (1)

(4.12)

This expression of f(t) constitutes a first representation in the form of a series. There is another, which we will
establish below. The starting point for the calculation is to write f(¢) as the inverse FT of f(v) :

ft) = [ T (v) ™" dv (4.13)

and since f(t) = ¢(t) * IIp(¢) then f(v) = ¢(v). I(Tv). Expanding the comb, we get

=1 % 5(7) (1) 1)



CHAPTER 4. FOURIER SERIES — SAMPLING 51
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FIGURE 4.1 — On the left a periodic function of period 7' and its pattern ¢(t) (main period) between —Z and .

On the right the graph of the pattern alone. The pattern must vanish outside the range [f%, %[

and by reverse F'T' it comes
1 s ~ /N : t
=5 > ¢ (f) e (4.15)

which is a second representation of f(t) as a series. This time it is a sum of trigonometric functions, this expansion
constitutes a Fourier series and will be detailed in the next paragraph Identifying the two representations
(eq. and [4.15)) yields the identity known as the Poisson summation formula

=Y sl—nt) = = 37 b(5) i (.16)

n=—oo

Application : improving convergence of series
By setting ¢ = 0 in the Poisson formula, we obtain the following relations :
> I < -/n
T) = - (%) 41
n;f(n ) = 7 n;oo¢ - (4.17)

and in the case where T'=1 - -
S o) = D é(n) (4.18)

The relation makes it possible to accelerate the rate of convergence of series by using the dilation-compression
property of FTs (a large function in direct space is narrow in Fourier space). Consider, for example, to calculate

the series
o~ (-D*
S = 4.19
S a1
k
This series converges to 7. We note s, = % its general term : it is an oscillating term which makes the

convergence slow (see fig. ) : 250 terms are required to obtain a precision of 1072 on the sum S.
To accelerate this convergence by using the relation |4.18] it is necessary to look for a function s(t) which is identified
with s; when ¢ = k integer. By noting that (1)¥ = sin[(2k + 1)%], we can put the series S in the form

T e . nm T o= . nw
S = §;smc (7) =1 Z sinc (7)

n o0
n#0
o0

3 sinc (%ﬁ) -1 (4.20)

n=—oo

I

X

o0
The term X is of the form Z X, with z, the values of the function z(t) = sinc (%t) for t = n integer. This
n=-—oo
function extends from —oo to co and slowly goes to 0 in the distance. Figure shows the graph of z(t) and the
first terms z,, for n > 0.
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FIGURE 4.2 — Illustration of the convergence acceleration property of the series defined by the equation (a) :
partial sum of the series S as a function of the number N of summed terms (the dotted line represents the limit of
the series). (b) : the term x,, of the series X (eq. [4.20) and the function z(t) which passes through the values x,,
for integer t. (c) : the function () and the terms &, of the series in Fourier space(eq. [1.21)).

The TF of x(t) is Z(v) = 2II(2v). By applying the equation we have

o0

X= > &n =2 ) T@2n) (4.21)

n=-—oo n=—oo

The only nonzero element of the sequence II(2n) is the term n = 0, because the rectangle vanishes when its
argument is greater than 1/2 in absolute value. So it comes X =2 and S = 7. A single term allowed to sum the
entire X series, benefiting from the narrow support of the function Z(v) (see fig. ) We have thus transformed
a series of oscillating principal term having a very slow convergence into a series converging extremely quickly.

4.1.3 Fourier series

The Poisson formula (eq. [4.16)) shows that a periodic function of period T takes the form

ft) = i cn €T (4.22)

n=—oo

This expression constitutes the Fourier series expansion of the function f. With the coefficient ¢, = +¢ (%). As

¢ = f are equal on the interval [f%, %[ and 0 elsewhere, the coefficient ¢,, is calculated from f :

1 T/ —2imn&
Cn = = f@)e =T dt (4.23)
T J 12

The equation [£.22] shows that a periodic function of period 7' is put in the form of a discrete sum of trigonome-
tric functions of frequencies 0, i%, i%, ...called (harmonic components). The frequency % is called fundamental
frequency, it is associated with the fundamental harmonic.

The Fourier series is the discrete analogue of the inverse FT integral discussed in paragraph [3.2.8] Retain that :

— A periodic function is written as a Fourier series, it is a discrete sum of complex exponentials
— Any function (non periodic) is written as a Fourier integral, it is a continuous sum of complex expo-
nentials

Case of real functions
Consider a function f, periodic of period T', and real-valued. It may be convenient to have Fourier series expressions
involving only real terms (sines or cosines).

If f real and even : In this case we have ¢, = c_,, and f(t) is a sum of cosines (which are also real and even
functions). By grouping the terms n > 0 and n < 0 in the equation we can write

£ = ap + i ap cos <27m;) (4.24)

n=1
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FIGURE 4.3 — On the left, a periodic function with period T' and pattern ¢(¢). On the right its FT is a comb of
period % multiplied by the FT of the pattern %qf)(l/). Each Dirac has an integral ¢, = %gf) (%) (we sampled the
function %é(u) with a period 7).

with ag = ¢g and, for n £ 0 :

: 0 :
a, = 2¢, = — f(t) cos (27m> dt

If f real and odd : In this case we have ¢, = —c_,, and f(t) is a sum of sines (the sine is odd). We obtain

£(t) = ,i by sin (27m;) (4.25)

with b,, = 2ic,, (note that b, is real and that ¢, is pure imaginary).

If any real f : It is always broken down into an even part and an odd part (see paragraph(3.1.2)). The Fourier
series is written as a sum of sines and cosines :

> t , t
f(t) =aog+ Z Gy, COS (27rnT) + by, sin (27mT) (4.26)

n=1

It is in this form that Fourier series were introduced by Fourier in 1822, in his treatise on the Analytical
Theory of Heat (eds Firmin Didot, Paris). Today we prefer the more modern approach using complex
exponentials, which only require one family of functions and not two to perform the decomposition.

FT of a periodic function

We have already written the FT of a periodic function (eq. [4.14)) and have shown that it is a sum of Dirac peaks.
The coefficients that weight this sum are precisely the coefficients ¢,, of the Fourier series expansion (eq. 4.23) :

fv) = [;s%(u)] @) = fj end (v—7) (4.27)

The FT of f is therefore (up to the multiplicative constant %) the TF of its pattern ¢ multiplied by a comb of

period % The integral of each Dirac peak is ¢, = %q@ (%), the Fourier coefficient. See figure |4.3| for an illustration.
In the sense of distributions, this operation is called sampling : this sampling can be schematized as follows :

continuous function : %é(u) = {%(ﬁ (%)} : ensemble of values (samples)

We will retain that :

The FT of a periodic function (period T)) is sampled (sampling period =)
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4.1.4 Examples
Crenel function

The pattern here is a rectangular function of width a, the period is T'. The function is written

F(t) = i H(t_a”T> motif qﬁ(t):H(Z) (4.28)

n=—oo

f()
A

= a

T

\J

The FT of the pattern is ¢(r) = asinc(nva), and the coefficient of the Fourier expansion is ¢, = Zsinc (1%2). The
Fourier series (real expansion on the cosines) is written

f) = 2 3 2a sinc (ﬂ'%> cos mnt (4.29)
T / T T T ’

It is a sum of cosines of frequencies multiples of % (the harmonic components). The constant term & is sometimes
called “continuous”, it represents the average value of the function over its period. It is also a harmonic component
of zero frequency. Figure .4k shows the shape of the signal reconstructed by the sum of the first 7 terms of the series.
Convergence is quite slow in the vicinity of discontinuities where oscillations are observed (Gibbs phenomenon)
which will disappear as the number of summed terms increases.

Case T'=2a  (Ronchi grating) : we have

1
cn = §sinc (77%) (4.30)
= 0 if n even (nonzero
—1)(n—=1)/2
= () et if n odd
™

Thus all the even harmonics (except 0) are zero, this is a peculiarity
induced by the shape of the pattern H(ﬁ)7 illustrated by the scheme on
the right. The Dirac peaks of the sampling comb corresponding to n
even coincide with the zeros of the function ¢(v) and are absent from
the Fourier expansion.

Case T'=a : it is a constant function of value 1 (the patterns are touching, see on the drawing below on the
left). We find that ¢,, = sinc(nn) : all the ¢, are null except n = 0. the figure below (right) effectively shows that
the sampling comb coincides with the zeros of the function ¢(v), except at the origin. The Fourier series expansion

of f is simply f(¢) =1.

fir)

A
(1) o(1=T

<~y




CHAPTER 4. FOURIER SERIES — SAMPLING 55

Signal f(t) TF: real part Signal f(t) and partial Fourier series (7 terms)
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FIGURE 4.4 — (a) : crenel signal of width a = 1.5 and period T' = 4. (b) : its FT (real part), made up of Dirac
peaks with integral ¢, centered at frequencies %. (c) : the signal (dotted lines) and the sum of the first 7 terms of

its Fourier series(eq. [4.29))

Triangular pattern
A}

2a T

~Y

The pattern is ¢(t) = A (%) with a half the width of the triangle. Its FT is $(v) = asinc®(mva) and the Fourier

expansion is
o 2 2mnt
f@) = % + Z ?a sinc? (W%) cos <7¥L> (4.31)
n

Here again we obtain a sum of cosines of frequencies multiple of % The difference with the development of the

crenel function (eq. [4.29) is in the weight of the harmonics (value of ¢,). Figure shows the shape of the signal
reconstructed by the sum of the first 5 terms of the series. Convergence is faster than in the case of the square slot
(fig. [4.4k), because the signal does not present any discontinuities.

Sawtooth

Y

The pattern is a line segment with slope 1 on the interval [0, 7. It is written

o(t) = (t - g) 11 <t T€> (4.32)

To calculate its FT, we can use the relation but it is easier to directly calculate the coefficient ¢, by the
integral of the formula We find

T
= 4.33
¢ Z27m ( )
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Signal f(t) TF: real part Signal f(t) and partial Fourler series (5 terms)

1 ’(c)

0.8
06
0.4}
0.2

0

-5

FIGURE 4.5 — (a) : triangular signal of period T' = 4, the width of the triangles is 2a = 2.4. (b) : its FT (real
part) : the position of the Dirac peaks is the same as in the case of the crenel function (fig. )7 but their
integral (coefficient ¢,, ) is different. (c) : the signal (dotted lines) and the sum of the first 5 terms of its Fourier

series(eq. [4.31))

as expected, the coefficients are pure imaginary (the function f is odd) and verify c¢_, = —¢, (fig. H4.6p). The
Fourier series expansion is written this time as a sum of sines :

i ;: i (27”“) (4.34)

n=1

Figure shows the shape of the signal reconstructed by the sum of the first 5 terms of the series. Convergence
is quite fast, except at discontinuities where oscillations are observed as in the case of the crenel function.

4.2 Sampling

4.2.1 Definition

Sampling a function consists of taking a set of values (samples) from the function. This is, for example, what a tape
recorder or dictaphone does when recording sound : sound is a continuous function of time, but during recording,
values are taken every fraction of a second (generally a value every 1/44000 of a second, we then say that we are
“sampling at 44 kHz”). This value of 44 kHz actually corresponds to twice the cutoff frequency of the human ear.
Or, equivalently, the 1/44000 second interval is half the ear’s “reaction time”.

Consider a continuous function ¢(¢) from which we take values at ¢ = ¢, = nh with n an integer and h the
“sampling period” (or “sampling interval”. Sampling ¢ is to form the sequence {¢(t,)}. But it is sometimes useful
to multiply ¢(t,) by the step h, and to consider instead the sequence {f,} = {h.¢(t,)}. The quantity f,, then
corresponds to the area of a rectangle of height ¢(t,,) and width h.

In the sense of distributions, sampling means to consider a function made up of a sum of Dirac peaks centered at
t, and an integral f,,. To the continuous function ¢(t) we associate the distribution

> fad(t—nh) = Z O(tn) h6(t —nh) = ¢(t)m(2> (4.35)

n—=—oo n=—oo

The comb III (%) has a period h, and each of the peaks has an integral h (note this is not the “usual” comb
I, (t) = % I (%) which is also periodic with period h but which has peaks of integral 1). And we notice that f
and ¢ have the same dimension : this is why we considered the sample sequence {h.¢(t,)} and not {¢(t,)}. We
will retain that :

Sampling a function ¢(t) with a period h means to multiply it by the comb III (£)
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Signal f(t) TF: imaginary part Signal f(t) and partial Fourier series (5 terms)
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FIGURE 4.6 — (a) : sawtooth signal with period T'= 4. (b) : its FT (this time we display the imaginary part). (c) :
the signal (dotted lines) and the sum of the first 5 terms of its Fourier series (eq. [4.34))

TF f(v)
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FIGURE 4.7 — Fourier transform of a sampled function. Left : continuous function ¢(¢) and its sampled form f(¢),
made up of a sum of Dirac peaks (the sampling interval is h). Right the FT of f(¢). It is a periodic function of
period % and pattern ¢.

4.2.2 Fourier transform of a sampled function

We perform a sampling of a function ¢, and we note f(t) = ¢(t) III (%) We want to calculate Fourier transform
of f. It comes :

f) = dw) « A1) = 3 6 (v %) (4.36)

It is a periodization of the function gf; with a period % We then find the interesting property according to which
sampling a function (with a step h) amounts to periodizing its FT (period %) We will retain that

The FT of a sampled function (with a sampling period h) is periodic (period %)

It is remarkable to note that this property is the exact symmetry of that encountered in paragraph : the FT
of a periodic function (period T') is sampled (step 7 ).
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4.2.3 Shannon-Nyquist Theorem

Shannon’s theorem, or Shannon-Nyquist, establishes the conditions for opti-
mal sampling of a band-limited signal (ie whose FT has a cut-off frequency).
This is the case for the majority of signals encountered in physics. Consider a
continuous signal ¢(t) whose FT has bounded support, i.e. it vanishes outside
a frequency interval [—vg,1p] (see diagram on the right). The quantity v is
called cutoff frequency of ¢. It corresponds to the frequency of the tightest
sinusoid present in the Fourier expansion of ¢. Its inverse Tp = 1/vy is called
cutoff period.

Let h be the sampling step for ¢. Three cases can be distinguished :
— Case h small (h < Tp)

Slgnal

o

-- h=0.25

0.8 B(t)

58

b O(v)

y

TF (module)

g N [ | 7
! \
06k / i ]
§ 4
i | 0.5}
0.4 i i B
] '
i i
02 é o ]
O i Y o8
o}&legsw@ \Q\m/ . \>v( Q2% 0 0

-3 -2 -1 0 1 2 3 -5

4 3 2
t

12345

The scheme above shows the effect of sampling on the continuous signal ¢(¢) = sinc(mv/Ty)? with Ty = 1.

Its FT is the triangle function ¢(v) =

ToA(vTy) and has a cutoff frequency vy = 1. On the left : the signal

¢(t) and the sampling points (red circles) for h = 1/4. On the right the FT shows the juxtaposition of
several patterns ¢ centered in 0,+1/h. Note that the different patterns in Fourier space do not overlap. The
weaker h, the more distant these patterns are. Between two successive patterns, the FT is zero. This case

corresponds to oversampling.

— Case h large

Signal : To=1 -

h=0.70

TF (module)
1 = T T T
08f o) /|
\/ \\‘
N \
0.6 ! \
|
0.4 \‘ \ 04}
/ ! .
) )
021 ) \ 0.2
8 >N
7D /
i ansic! " \y Y, N ol v 1 | . . . . . .
-3 -2 1 0 1 2 3 -5 3 2 A 0 1 2 3 4 5

The sampled signal is the same as above, but the sampling interval is larger

v

: h =0.7. On the right, the F'T

of the sampled function (in red) and the different patterns & which overlap (in green dotted lines). This is
the phenomenon of spectrum aliasing). We are in the case of a undersampling. In direct space (left) the
red circles do not correctly sample the fine details of the function ¢ (in particular the local minima of the

function sinc?).

. . o Ty
— Optimal case : h = 3
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Signal : T)=1 - h=0.50 TF (module)
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A S 54321012345
14

In Fourier space, the patterns touch each other without overlapping. We then speak of optimal sampling.
This property is known as the Shannon-Nyquist theorem (or the sampling theorem). The optimal sampling step,
or Nyquist period is equal to

To 1
he=—=— 4.37
2 2y (4.37)
similarly, we define the Nyquist frequency, inverse of h. :
oo = 2 (4.38)
Ve =21 = — .
=T

We will retain that :

’ The Nyquist frequency is equal to twice the cutoff frequency of the signal.

A signal is said to be correctly sampled if the sampling frequency is equal to v.. A signal is oversampled (resp.
undersampled) if the sampling frequency is higher (resp. lower) than v,. Thus a sound signal audible by the ear
(maximum frequency ~ 20 kHz) must be sampled at 40 kHz or more (it is generally 44 kHz in classic WAV or
MP3 files). Oversampling is not a problem in terms of the storage of the information present in a signal; on the
other hand, it is necessary to avoid undersampling (loss of information, even appearance of parasitic structures as
illustrated by the example below.

Example : Sampling a Cosine Function Consider the function ¢(¢) = cos (%) It has a unique period Ty

which is therefore its cutoff period. Its cutoff frequency is vy = T%, Figure = illustrates oversampling with a large
number of points per period, allowing faithful reproduction of signal variations. The case of Shannon sampling
corresponds to figure [£.8p. In this case we have two points per period Ty. The graph of the sampled signal looks
like a sawtooth, but allows the measurement of Tj. The figure is an undersampling with one point per period
(h = Tp) : the sampled signal is constant, we no longer see the periodicity of ¢, we can no longer measure Tj.
Finally, figure [{:8/d shows another case of undersampling with A = 1.2Tp. This time the sampled signal shows a
period greater than Ty (a lower frequency which is a noise due to aliasing).

This last case corresponds to the phenomenon of the airplane propeller. Observe a rotating airplane propeller : your
eye naturally samples the image of this propeller with a rate of about 25 frames per second. If the propeller rotates
faster and faster, you will have the impression that it becomes stationary when its rotation period corresponds
to the sampling period of the eye (case of the figure ) If the propeller spins even faster, you'll feel like it’s
changing direction and spinning slowly. (figure )

4.2.4 Unsampling — Shannon Interpolation

Let f be a sampled function with a sampling interval A (sum of Dirac peaks). To build this function, we take the
product of a continuous function ¢ by a comb of period h : f(t) = ¢(¢) I (%) We are interested in “unsampling”
the function, i.e. finding ¢, knowing f. It therefore consists of calculating the values of ¢ between the sampling
points, a classic problem of interpolation in numerical analysis. Various methods exist, for example the linear
interpolation which use straight lines between the points. We thus obtain an approximation of ¢(t) for all ¢.

This paragraph presents a method which allows to calculate the exact values of the function ¢ between the sampling
points. It works under two conditions :

1. The FT QAS(I/) has bounded support with cutoff frequency vq

1

2. The ¢ function is not undersampled : h < 5
Vo
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(@):T=1 - h=1/8

25 2 15 -1 05 0 05 1 15 2 25
(b) : T=1 — h=1/2

1 TN 7T SN 7T /TN
/, . ; . // . / \ / \
/ \ / \ / \
0 \\ 7 N 7 \\ 7 \ / \
)/ v v v v \
—1¢ ! N ! A ! NI ! Y ! A
25 -2 -15 -1 -05 0 5 1 1.5 2 2.5
©:T=1 - h=1
1 AN TN AN N 2N
// . / . // \ / \ / \
/ / /
\ \ \ \ \
0 \ ! \ \ / \ / \
// \ / \ // \ / \ / \
-1 ! N ! N ! NI ! N ! A

25 -2 -15 -1 05 0 05 1 15 2 25
(d):T=1 - h=1.2

1 ZANN VN 20N N RN
/ \ / \ / \ / / \
0 // \ S? \ / ! ER ! A
\ ! \ \ / \ / \
L/ \ / \ / \ / \ / \i
\\/ | N\ / | \\/ | \\/ |

FI1GURE 4.8 — Sampling of a cosine function of period Ty = 1. The function is in dotted line, samples are drawn
with red circles. (a) : case of oversampling (step h = 1/8). (b) : optimal sampling (Shannon condition, not h = 1.
(c) undersampling with » = 1 : the signal seems constant. (d) undersampling with h = 1.2T : the signal seems to
have a much larger period than T; (low apparent frequency).
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The principle is to make use of the particular form of the F'T f (v), composed of a succession of patterns (,zAS centered
in n/h (n integer). If the two conditions above are met, there is no spectrum aliasing and the patterns are disjoint.
The idea is then to isolate the central pattern by multiplying h by a gate of width % :

T

0.8

0.6

T

T

0.4

T

0.2

-1/h 1/h

The gate of width % is chosen to remove from f all side patterns without altering the central pattern. We will
therefore have :

. . v

o) = f0) T (17 (4.39)
This relation then makes it possible to calculate ¢(t) by inverse FT.

Expression of the interpolation in the direct plane

It is a question of obtaining a formula giving ¢(t) for all ¢ by carrying out an inverse FT of equation It comes :

o) = fa)  sine (mp ) = 3 ooy mr ()] « sine (w1 )

i $(nh) 6(t —nh) * sinc (772) (4.40)

n=-—oo

And we get the following formula, known as the Shannon- Whittaker interpolation formula :

o(t) = Z @(nh) sinc (%(t - nh)) (4.41)

n=-—oo

Since ¢(nh) is known (the function is sampled with step h), this relation allows to calculate ¢(¢) for all ¢. Figure
illustrates this relationship. It shows how, between sample points, the function ¢ can be computed as a sum of
sinc functions. For this reason, the sinc is sometimes called interpolation function.

Example : doubling the sampling rate of a signal

Consider the following numerical analysis problem : we have a signal with a sampling period h, we want to resample
it with a period b/ = % We can use the Shannon-Whittaker formula (eq. @ , but it is more interesting in this
case to do this interpolation in the Fourier plane using a fast Fourier transform algorithm. Figure illustrates
the principle. If the signal f(¢) is well sampled (or oversampled), its FT is made up of disjoint patterns, centered at
frequencies 7 (n integer), between which the value is 0 (fig. ) The idea is to move these patterns to frequencies
77> by inserting zeros between them (zero-padding technique, fig. ) By inverse FT, we then find the signal
f(t), sampled with the new interval h'.
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FIGURE 4.9 — lllustration of the Shannon-Whittaker interpolation formula (eq. [4.41]). In dotted lines, the function
@(t). The red circles represent the sample points. The interpolation formula shows that in all ¢ the function ¢ is the
sum of an infinity of sinc functions centered on the sampling points, in ¢ = nh, weighted by ¢(nh), with n integer

0 1

from —oo to co. The cases n =0, n = 1 and n = 2 are highlighted on the graph.

(a) : signal sampled with step h
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FIGURE 4.10 — Resampling a signal f(¢) (of sampling
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& (a) signal f(t). (b) its FT,
(n integer). (c) after moving the patterns to frequencies
and zero-padding. (d) after inverse FT, the resampled signal with period h'.



Chapter 5

Exercices

Thanks to my colleagues Jacques-Alexandre Sepulchre, Jean-Pierre Provost and Jean-Louis Meunier with whom I
shared these tutorial exercises for many years.

5.1 Dirac § impulse

5.1.1 Usual functions in signal analysis

The functions defined below are used frequently in the other exercises. Graph these functions when the argument
t—T
t is replaced b .
P Y T

. . . 1 ift>0
Heaviside unit step function H(t) = { 0 ift<0
1 if |t < 1/2
0 if |t| > 1/2
1—t if |t <1
0 otherwise

Gate function : I1(¢) = {

Triangle function : A(t) = {

Cardinal sine : sinc(t) = 32t

t
Dirac comb : III(¢) = 26(15 —n)

5.1.2 Translation and dilation of a signal

1. Write the expression of the functions below in terms of the gate function (the last function is periodic) :

A1) fir) s f(1)
1 1 C
t t t
-2 12 -a/2 | a2 12 12
1) v fit
1 4—1> <L> a
. o L]
b b b

63
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2. We define the two-variable Dirac impulse §(z,y) = 6(x).0(y). Write the expression for the functions z =
f(z,y) below (each black dot represents a delta peak seen from above. For the fourth figure, the function
responsible for the oscillations is a cosine.

1.

AY y
b . X e o o) o o o X
. la g NN ST A
AY y
R
X * R N . X
a L] a: ° ° L]
ol o« o
. Yo .
<—b—>
5.1.3 Dirac delta impulse
Express Dirac’s § in terms of limits using the following functions :
1
=
— sine(t)
— sinc?(t)
_— 67(t71)2
. What is the limit of the sequence of functions f,(t) = %e“ﬂtz ?
Graphically represent the signal g(z) = > 26(x — n). Calculate 71\320.5 g(z)dz.

With the definition of §(¢) as the limit of a gate, show that fttf 0(t)p(t)dt = {

w(0) iftg <0< to
0 otherwise

5.1.4 Derivatives of discontinuous signals

Calculate and plot the derivatives of the following signals (stop the derivation when derivatives of § appear) :

expf|t\,

b

sin wt vt
Hi(t -
0 o (-7,

t
Sgn(t) = m7
The triangle function on the right.

5.1.5 Dirac comb

1. Write the expression for the periodic distributions whose graphs are shown below.
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A ) A &)

2. Plot the function

0
We will study two cases : integration interval |0, z] (limit 0 not included) then [0, z] (limit 0 included).
3. Plot the distribution f(z) =z II(z) and calculate the integral

N+1/2
Iy = / f(z) dx
1/2

with N positive integer.

1
4. Let f(z) = H (x + 2) e ® II(x). Draw its graph then calculate its integral from —oo to +o0o. We recall

that the sum of a geometric series with common ratio ¢ < 1 is

oo
an:L

n=0 1—q

5. Consider the periodic distribution below. Give its period and write its mathematical expression using ¢
distributions and/or combs.

fix)

-

-2a-a 2a 3a 6a 7a
a 4a 5Sa S8a 9a Vx

5.1.6 Derivative of ¢ distribution

1. Write the derivative of the gate function g(z) =[] (%), with a > 0.
1 x . . 2
2. Let ge(x) [T(%). What is lg%ge(x) .

3. Write the derivative g/(x) and deduce a possible definition of the derivative ¢’ of the Dirac distribution. Plot
& (z).

4. Let f be a function defined for all real x; based on the previous question, give the value of the product
f(x) &'(x) for & # 0. What is the integral [~ f(x) ¢'(z) da?

5. Calculate ffooo fly) 0'(x — y) dy. What property of the convolution product do we find ?



CHAPTER 5. EXERCICES 66

5.2 Linear filter and convolution

5.2.1 Convolution product

We define the convolution between two functions f and g by :
ht) = (£+9)) = | fie=t)ge)ar

This operation has the properties of a product.

1. Show that :
— [rg=gxf
— if f-(t) = f(t + 7), show that (fxg), = frxg= f*g,
— (f*g) =f'*xg=f=*g (consider (f *g), with 7 — 0)
— (fxg) (M) = [ALF (M) * g(At)
2. Calculate and draw the following functions :
— TI(¢) * acos(wt + @)
— A(t) = (L= 1D)(?)
— (I % I+ 1) (¢)

3. Express the following operation,

T

i+3
f%F@=l[ @t

z
2

as a convolution product. What type of signal processing can this operation correspond to ?

5.2.2 Impulse responses

1. We consider the electric circuits below, with z(¢) and y(¢) the input and output voltages. Using circuit laws,
calculate the response g(t) to the Heaviside function (i.e. the value of y(t) when z(t) = H(t)), and the
impulse response R(t) (i.e. the value of y(t) when x(t) = d(t)).

R

C
AN |

x(t) Cc — y(t) x(t) R y(®)

Onposera : y=—

y(t)

12
2| =

2. Same question as above, with RL circuits.

3. A mechanical damper is described by the equation
m(f + 7y +wiy) = x(t)

where x(¢) is a time-dependent exciting force. «y is the coefficient which expresses the viscosity of the medium
and mw? the stiffness constant of the spring. We suppose that vy > 2wy.

— Show that the system can be interpreted as a linear filter. (explicit the input and output of the filter).
— Calculate the impulse response of the system.

— Write the general solution y(¢) in the highly damped case. What if the force x is a train of periodic pulses

Tl (¢) ?
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4. Calculate the impulse response R(zx) associated with the following differential equation of order 4, where
f(z) is the input signal and y(z) is the system output :

_a7 +ﬁ7 = f(.%‘),

with « and S positive real constants. Make a plot the function R(z).

5.2.3 Photon distribution

The arrival on a sensor of photons coming from a light source can be modeled by a set of discrete pulses similar to
Dirac distributions §(t). The arrival times of the photons are random, but we will here consider that the photons
arrive at perfectly determined instants. We then have the following intensity distribution :

t) = ; ) (t—nT— €COS (27r%>)

withe <7 and T > 7.
1. Plot the function f(t). Is it periodic?
2. Calculate and plot the function

= /Ot F)atr

3. Let tpar and t,,;, be the maximum and minimum time intervals separating the arrival of two successive
photons. Calculate t,,q, and t,in. N.A. : 7=0.1s,¢=0.05s, T = 2.05 s.

4. The photons are observed by a photomultiplier whose impulse response is modeled by a gate of width ¢g.
The measured light curve is plot on a screen as a function of time. Draw the shape of the light curve if
to < tmin-

5. We define the sequence of numbers g,

(n+1)t0
gn = / f(t)dt

to

What does this operation physically correspond to (f(¢) represents a distribution of light) ?

5.3 Fourier transform

5.3.1 Fourier transform calculations

Fourier transform of a function or distribution f is :
FOI0) = f0) = [ sresar

We recall some important properties (that you must be able to prove) :

— Flf(t+7)] = fp)ermr "
_F[2zwuotft]: (v — 1) }—[dt} = 2imvf(v)

— Pl = 1 ( ) (for  real). — Fl(f+9) 0] = f().4(v)
@ - f( — FII®)9®] = (f * ) )
1. Show that :

— the FT of a real and even function is real and even
— the FT of a real and odd function is imaginary and odd
— FIFIfII®) = f(=1)
2. Calculate the FT or FT~! of the following functions (or distributions).
— Fle~

— fl[l[\(u)]z} - i[_clo[j?]l 27v]
— Fl ey .
. _F [smj 7Tt:|

B H (1 /T)] — F ! [sign(v)
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_ 2
e~ 2.2 show that g,2 * gor2 = go2 o2

. 1
3. if go2 (t) - \/ﬁ

4. Calculate the following integrals (from —oo to +00) :

sin(z) sin?(z) sin(z) cos(z) sin?(z) cos?(z)
/ dx,/ dsc,/ . d:c,/—dx

x 2 2

5.

We consider the signal f(z) described by the graph opposite : f A fx)
equals 1 between —a and 0, -1 between 0 and a and 0 elsewhere.
Calculate its FT f(u) and draw its graph (real, imaginary parts). 1

=y

5.3.2 Operations on signals

1. We consider the following functions : fo(t) = I(t/To); fi(t) = fo(t) sin(ZE); f2(t) = fi(t) Zé(t —nTe)

1 t+7‘/2
with Ty = AT = 12T, = 24r fy(t) = © / Folt)dt
t

T —7/2
(a) Plot their graph
(b) Graph the functions | fo(v)], ()], 1f(0)], [5(0)].
(¢) Comment the operations going from fy to fi then to fo then to f3 as well as their effects on their FTs.
2. Draw the following functions, for Ty = 47T = 167 > 0 :
— Jfo(t) = A(t/To)
(oo}

— i) = folt). D bt —nT),

n=—oo

— a0 =TI (4)

— Calculate and represent graphs of functions fo, fl, fg, Fourier transforms of functions fy, f1, fo.

5.3.3 Phase contract

Consider the function
f(z) = exp(ie cos(2mrmz))
with € < 1 and m a positive real number.
Calculate |f(z)[?
Make a Taylor expansion of f to first order, then write the FT f (u). Plot the shape of f.
We multiply f(u) by the function ill(%) with b < m. The result is noted fi(u). Calculate fi(u).
Deduce f;(z) by inverse FT

Calculate |f1(z)|> and show that it reproduces the phase variations of f. Discuss in a few sentences the
name “phase contrast” given to this technique.

Otk o=

5.3.4 Deconvolution

We consider a signal composed of two Gaussians centered at +b/2 :

f(x) = exp <_7T(x_ag/2)2) +exp <_7T(x+2/2)2>

a

with b > a.
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1. Write f(z) in the form of a convolution between a Gaussian g(x) and a function h(z) which we will explicit
2. Calculate and plot the FT f(u) of f

3. We divide f(u) by the function ¢(u) = exp(—ru2a?), we call fi(u) the result . Write fi(u) and its inverse

4. Link fi(x) to h(z). Why do you think this operation is called a “deconvolution” (explain in a few sentences) ?

5. We now replace the Gaussians by sinc functions, and we consider the following signal :

f(@) = sinc (ﬁ b/ 2) + sine (WHW)

a a

Repeat questions 1 to 3 (note : in this case the function ¢(u) is no longer a Gaussian but a function to be
determined) and explain why the deconvolution does not work in this case.

5.3.5 Optical FT

When a monochromatic light wave with wavelength A encounters a screen with amplitude transmission coeffi-
cient t(z,y), a diffraction phenomenon occurs. At a large distance d the amplitude f(z,y) observed at a point of
coordinates (z,y) of the plane z = d are written

STy
y) =K i (77 7)
flz.9) DY
with K a constant (assumed equal to 1). We will consider two different screens : the first consists of two square

slits with side a spaced by b in the direction Oz, the second is a circular diaphragm with diameter a striped with
fringes of type cos? of period b < a.

For each screen, write the transmission coefficient t(z,y), calculate the diffracted amplitude f(x,y) and plot the
graph of the intensity |f(z,y)|? (take b = 10a for the first mask and a = 10b for the second).

5.3.6 Recording a sound

We consider a singer on the stage of an opera. The singer produces a sound signal of intensity f(t), ¢ being the
time. We assume that the singer is able to produce sounds of frequencies v such that |v| € [v1, o).

1. Drawing inspiration from the data in the statement, roughly draw the appearance of the real and imaginary

parts of the Fourier transform (TF) f(v) (v can be positive or negative). Put on the graphs as many
indications as possible.

2. A microphone records the singer’s voice. The microphone is characterized by a causal impulse response that
we will model by the function h(t) = @ exp(—t/7) (r > 0). Calculate h(v) and draw schematically its

real and imaginary parts.

3. We call g(t) the recorded sound signal. What is the relationship between the original signal f and the
recorded signal g7

4. What becomes of this relation in Fourier space? Graph the shape of the real parts of f , 3, h putting in
evidence the frequency filtering introduced by the microphone.
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5. In your opinion (justify your opinion with scientific arguments) is the microphone a high-pass filter ? low
pass ? band pass? of another nature (specify)? What is the condition on 7 so that the highest frequency
of f is transmitted by the microphone (we will consider that a frequency v is transmitted if the ratio

lg(v)/f(v)| > 0.001

5.3.7 Linear filters

1. Consider a filter whose impulse response is :

R(t) = sin?(nt) [ (t - %)

) Is it a causal filter ? Make a plot of R(t).
(b) Let x(t) be an input signal. Write the output signal y(¢) as a time integral.

—
&

) Express the output y(t) as a frequency integral. Calculate R(v) (hint : use sin®z = (1 — cos2z)/2).
Schematically represent the graph of R(v).

—
o

(d) Is it a low pass or high pass filter 7 How does this filter compare with one whose impulse response is
Ro(t) =TI(t — %) ?
2. We consider a linear filter acting on a time signal x(t). This filter is characterized by a transfer function
f(v) (v is the frequency). The filtered signal is called y(t).

(a) Recall the so called “impulse response” of the filter. Does it depend on the signal z ? signal y ? of the
function f? What is the impulse response in our case (to be written with only the data of the statement) ?

(b) Write the relation between the signals z(¢) and y(t) (direct plane). How is this relation written in the
Fourier plane ?

(¢) The transfer function is of the form f(v) = hgexp(—2inTv) with ho and 7 positive reals. What is the
relation in the direct plane between x and y in this case ? Give a physical example of this type of filtering.
Does the case 7 < 0 have a physical significance and why ?

(d) Same question if the transfer function is Kv, with K a pure imaginary constant.
(e) Same question if the transfer function is hod(v — 1) (ho and vy positive reals). Show that in this case
the filtered signal y always has the same form. What happens if vy =07

(f) We now assume a transfer function of the form hg [ <V—”0) (vp positive real).

i. What is the associated impulse response h(t) ? Draw its graph.

ii. What is the limit of h(t) when vy — 07 What then is the relation between z and y in the direct
plane ?

iii. Same questions if vy — co.
iv. For any 1, write the signal y(¢) when z(t) = 2 6(t — 7) (7 real).

v. Recall the relation between §(t) and the Heaviside unit step H(t), deduce an integral form for y(t)
in the case where z(t) = x9 H(t — 7). Inspired by the graph of h(t), roughly draw that of y(¢).

5.3.8 Optical filtering

We consider a sinusoidal pattern described by the function

2
O(z,y) =14 mcos ﬂ
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with m < 1. We carry out an optical filtering experiment whose transfer function is written

T(u,v) = exp (WK(UQ + UQ))

with K a constant. The amplitude of the filtered object is denoted f(z,y) and is calculated thanks to the filtering

relation in the Fourier plane : f(u,v) = O(u,v) T'(u,v). Calculate this amplitude and the corresponding intensity
|f(z,y)|?. Show that there exist values of K for which the intensity is uniform, and that we may have contrast
inversions (inverted black and white stripes).

5.4

1.

Correlation and power spectrum

Calculate the power spectrum and the autocorrelation of f(t) = acos(2mvy(t — to)), show that it is inde-
pendent of origin ¢o. How these functions are modified if f is multiplied by a Gaussian g(t) = exp(—nt?/a?)?

. Calculate the autocorrelation of f(x) = §(x) + md(xz — a) then that of g(x) = II(z) + mIl(x — a). What is

the relationship between C(p) and Cy(p) ?

Let the signal f(t) = a1 cos(2mv1t) +ag cos(2myat) with 14 and vs very close and vy > v1. We set v = vo—1

and vy = (1/1 + VQ)/Q.

— Calculate the power spectrum Wy (v) of f

— Same question if the signal is truncated by a gate of width 7' > 1/v;.

— What must be the minimum value of T" if we want to “resolve” the two frequencies v; and v5 7 N.A. : we
observe the oscillations of the Sun (f(¢) is the corresponding signal) during a continuous period of time
of 12h. What is, in Hz, the corresponding resolution on the power spectrum of f?

4. Calculate the autocorrelation of a chirp function f(t) = cos(wz?/a?)

5. We consider the sum

10.

N
flz) = Z an 0(x — )

n=0

with z, random numbers uniform distributed between 0 and 1. Show that the autocorrelation of f tends to
a Dirac when N — oo. What happens to this autocorrelation if we replace d(x — z,,) by g(x — x,) with ¢
any function (relate C¢(p) and Cy(p))?

We consider two signals f(t) and ¢g(t) = f(t — a). Explain how the phase of the cross-spectrum of f and g
makes it possible to measure the shift @ between f and g. Relate Cyq(7) and Cy (7).

A centered white noise is a function whose each value f(¢) is a random number with zero mean, and whose
power spectral density is the constant o2 (variance of the random numbers that make up f). Consider the
sum g(t) = f(t) + acos(wpt). Calculate the autocorrelation of g and show that it can detect the sinusoid
even if it is drowned in noise (a < o).

Using Parseval’s theorem, calculate the following integrals :

oo d oo
[ na [ sty o tor = 2.4

We consider a slowly damped vibration having the expression :

0 ift<O
V(t) = { Aexp (—%) cos(2mvpt) ift >0

7 being the relaxation time of the vibration, which is assumed to be long compared to the signal period

(vo > 1/7). What is the (complex) frequency spectrum V (v) of this vibration. Deduce the power spectrum
and find the relation between 7 and the width at half maximum dv of the peaks of |V (v)]2.

Determine the functions ¢,,(¢) such as :

on(v) =11 (%) exp (—iwn%) .

Using the Plancherel-Parseval formula, calculate

/ G (Dmt) dt

What can we deduce ?
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9.9

Fourier series

Any periodic signal f(t) of period T' can be expressed as a sum of sines and cosines, or equivalently as a sum of
complex exponentials. The expansion is of the form :

+oo
; t
f(t): Z Cnelzﬂ—nf

n=—oo

the coefficients c,, are :

1T -
nzi t —1 ﬂn?dt
c T/o f(t)e

The set of complex numbers ¢,, constitutes what is called the frequency spectrum of the signal f(t).

1.

Show that we can define the ¢, in an equivalent way by calculating the above integral with integration
bounds between ¢y and to + 7' (in particular between —7'/2 and T'/2).

Show that if f(¢) is even (and real), the ¢, are purely real numbers. Subsequently the Fourier series can be
written as a sum of cosines only. What happens if f(t) is odd ?

Calculate and graph the frequency spectrum of the crenel signal h(t) drawn below.
h(1)

A

10000

Calculate and graph the frequency spectrum of the
crenel signal g(t) drawn below. (Show the factor
exp(—imna/T) in the Fourier coefficients). Compare

the spectra of h(t) and g(¢). Deduce a general under- 1
lying property. _‘ H H
. > ¢
0 a T

g(1)
A

. A sawtooth signal is obtained by periodizing the linear function f(t) = at, (0 < t < T). Calculate the

frequency spectrum of this signal

— by direct method,

— using the property that f’(¢) is a Dirac comb.

Compare this development with that of another sawtooth signal, defined by > A(t}Q").

. Give the Fourier series expansion of the following function (cosine absolute value) :

c(t)

. Relate the Fourier series of a real signal, expressed in terms of complex exponentials, to the Fourier series

written using sine functions and cosine where all coefficients are real.

. We consider the function

; g(v)
fw) 2riv)?’

S oA() — —i2 5 —id 1,—i8
with g(v) = 1 —3e™"™ + Je ™" — Je™ '™,
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— Check by calculation that the limit v = 0 exists for f(v).
— Calculate and plot g(t).
— Deduce f(t) and represent its graph. Check that f(0) is the value we expect.

9. Compute the mean and the autocorrelation I'f(7) of the following functions :
oo

() = et f(t) = 11(1), f(t) = 6(t —a) +3(t+a), f(t) = Y w(t —n7) with p(t) = TI(t) and @(t) = 6(t)

n=—oo

(use the Poisson relation between f(t) and its Fourier series).

I 1t
We recall that (f) = T/ f(t)dt and that T'f(7) = T / f@)f(t+ 7)dt for a periodic function of period
0 0

T. For nonperiodic functions, we will simply calculate the integrals from —oo to co without multiplying by
1/T.

5.6 Sampling and periodization

1. Let f(t) be any signal which decays very rapidly outside the interval [0,7]. Represent the graphs of the
following functions :

— fper = f(t) * Wp(t).
— MIp(t) « (t/7), with T = 37.
)

() = [F() # Ly (6)] Ly, (t), with T = NT,.

— Jfech * (7).
2. From the sampled values of a function f(t), one can construct a continuous function f,(t) which approximates
f(¢) piecewise linearly. Show that the following expression performs this linear interpolation operation of f :

Ja(t) = A(/T) * foen (1)
5.6.1 Convergence acceleration of a series
We recall the relation Z fln) = Z f(n) (deduced from the Poisson’s formula).

1. Consider the series

o0
(=1)*
S=>
= 2k+1
Write the main term of the series using a cardinal sine function f, then calculate S using the Fourier
transform f.

> 1
2. Calculate the sum kz::o W

5.6.2 Sampling a narrowband signal

The signal z(t) is said to be narrow band if its FT Z(v) is zero outside the intervals |v — g < 8 and |v + | < B,
with condition 8 < vy. The questions below aim to analyze the problem of sampling this type of signal. We assume
x(t) real.

1. Give the qualitative appearance of the function Re &(v). Show that the direct application of Shannon’s
theorem would lead to choosing a sampling frequency v, = 2(vy + 3).

2. We consider the analytical signal associated with z(t) :

z(t) 2/ &(v)e*™ ™t dy
0

= a(t) +iy(t)

Represent Re Z(v) on the graph of the previous question. Show that z(t) can be expressed as z(t) =
A(t) exp(2mivgt), where A(t) is a low signal frequency. Represent A(v).

3. Let A(t) = A1(t) 4+ iAa(t). Using the relation x(t) = Re z(t), express z(t) in terms of A; and As.
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4. Apply Shannon’s sampling formula to the signal A(t) = z(t) exp(—2mivyt). Deduce a formula which makes
it possible to reconstruct the signal z(t) from the samples A;(t,) and A3(t,) at instants ¢, = 53.

What can we conclude with regard to question 17

5. Show that in practice, A(t) can be obtained in the following way : A;(t) is obtained by low-pass filtering of the
signal u(t) = 2 cos(2mvpt)z(t). Similarly As(t) is obtained from a low-pass filtering of v(t) = 2 sin(2wvot)x(¢).

5.6.3 Link between the Shannon formula and the Fourier series
1. Consider a signal v(t) whose Fourier transform is defined as follows : 9(v) = alv| if (-9 < v < 1) and
9(v) = 0 otherwise.
— How should we sample v(t) to be able to reconstruct this signal without loss of information ?

— Calculate v(t) and write Shannon’s formula explicitly in the particular case of this signal.
— Compute the Fourier transform of the two sides of the resulting equation. What do we find 7

2. Generalization of Shannon’s formula.
We consider the trapezium function defined as follows :

- B+ v B v
M) ==5—A <B+ﬁ> 4 (5)
where B and [ are two positive numbers.
— Plot the graph of M(v), with § = B/2.
— Calculate M(t).
hint : use the formula sin? a — sin® b = sin(a + b) sin(a — b).
— Let f(t) be a band-limited signal [—B, B]. Explain, using an appropriate graph, why we can write :

F) = 100 g5 (55755 )| 10)

— Deduce the following formula :

- En: f (2325) sinc(7([2B + ]t — n)) sinc (W (/ﬁ - 23%5))

How does this expression compare to the “classic” Shannon formula? How can this generalization be
advantageous ?

3. Let f(t) be a real band-limited signal : f(v) = 0 for |v| > B. Let E(t) be the periodic signal defined by

n)Z_:OCAH(tn

), where T' > 7. We set :

— Draw an example of the graphs of f(t), E(t) and fg(t).

— Connect the Fourier transforms fz () and f(v).

— Draw the graph of fg(v) in the case 7/T =1/2, T = = f(v) = A(v/B).

— Explain how it is possible, using a suitable filter, and under the Shannon condition, to reconstruct the
function f(t) from the function fg(t). Call R(t) the impulse response of the filter such that f(¢) =
R(t)  fe(t).

— Using the last equation, in what limit do we recover Shannon’s sampling theorem ?

4. Let f(t) be a narrowband signal with respect to v, i.e. f(v) # 0 only for |v| < vy. We consider the recurrence
defined by the following operations on the signal f(t) :

i) = 2cos(2mot) f(t)
fa(t) = 2cos(dmpt) f1(t)
f3(t) = 2cos(8mwpt) fa(t)

(a) Compute f3(v) as a function of f(r) and represent the result schematically on a graph.
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(b) What is lim f,,(v) if we continue the sequence of multiplication by cosines defined by f,(t) =
m—r o0
2cos(2"mvpt) frn—1(t) ?

(c) We consider the periodization
A A (2n+1)
fper(v) = Zn:f (V T T,

where Ty = 1/14. Calculate the inverse Fourier transform by displaying a Dirac comb and plot the (real)
distribution obtained. We recall that f(¢)d(t —to) = f(t0)o(t — to).
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Fourier transforms

Definitions

Direct FT

Inverse FT

Miscellaneous

— Gate (or rectangular) function : II(t) = {

— Heaviside function : H(t) = {

— triangle function : A(t) = {

for= [ sw e a

fo= [ fwyema

1ift>0
0ift <0

1if [t] < 1/2
0if |t| > 1/2

1— [t if | <1

0 otherwise
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— Chinese hat : j((t) =
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— Dirac comb : II(¢t) = Z d(t —n)

n=—oo

— Cardinal J; : jinc(t) =

General properties

2

sint

— Cardinal sine : sinc(t) = —

[arcos(m) VI t?}
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af(®) +bg(t) | afw)+bfWw) g 2imvf(v)
(%) al fav) L1 o
£(t) f(—v) £(t).0(t) (f+))
[ | fo) e (f*9)(t) f)-4w)
@t | fo-w) | Ol = [T gt nar | he) = F0) o)
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. ﬂmz[%ﬂmﬁ ﬂmz/mﬂww (1) = F(—1)

e Parseval’s theorem

/ij@mwﬁ—/wﬂm<mw

— 00

>

’ . . . . o0 oo
Périodic functions : Poisson sum- A /n Yirnz
o . . . E ¢(r —na) = E pl—)e =
mation formula (Fourier series) a
n=—oo n=—oo

Parity related properties (real functions only)

f real and even
f real and even

f real and odd

f any real function

< f real and even
<= Fourier transform equals inverse Fourier transform
<= f pure imaginary and odd

<«  f(—u) = f(u) (even real part, odd imaginary part)

Functions of one variable
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Function Graph Transform Graph
exp(2irmt) : (v —m) o

o8 1 1 o
H(t) = P
o 2 W) +v (21'71'1/) .
1 1
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05r [ | “ “‘J‘ 08
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Function Graph Transform Graph

o
2

o
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Functions of two variables

Direct FT -
fluo) = [ oy et duay

Inverse FT -
f(mvy) = // fA(u’v) e?iﬂ(ua:-i-vy) dudw
—0o0
Separable functions f(z,y) = g(z) h(y) < f(u,v) = §(u) h(v)
Functions with circular symmetry

Let » = /22 + 92 and ¢ = Vu? + v2. The 2D direct and inverse FT have also circular symmetry, and can be
expressed as Hankel transforms :

flg) = /000 f(r) Jo(2mqr) 27r dr

and
£0) = | Fa) Jo(2mar) 2vq dg
0
Function  Graph Transform Graph
d(r—a) 2rady(2maq)
1/r 1/q

[ 2 WT(F jine(mdg
B o

|

|
|

|

|
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Function Graph Transform Graph
1 exp(—2maq)
Vi@ q
exp(—7r?) exp(—mq®)
Airy disc 1 q
jinc(mar)? @j( (a)
(a>0)

(real part)

exp(—ar)

ia® exp(—ima?q®)

2ma
(472¢2 + a2)3/2

v2f

(real part)
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