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Abstract
Massive planets form within the lifetime of protoplanetary disks, and therefore, they are
subject to orbital migration due to planet–disk interactions. When the first planet reaches the
inner edge of the disk, its migration stops and consequently the second planet ends up locked
in resonance with the first one. We detail how the resonant trapping works comparing semi-
analytical formulae and numerical simulations. We restrict to the case of two equal-mass
coplanar planets trapped in first-order resonances, but the method can be easily generalized.
We first describe the family of resonant stable equilibrium points (zero-amplitude libration
orbits) using series expansions up to different orders in eccentricity as well as a non-expanded
Hamiltonian. Then we show that during convergent migration the planets evolve along these
families of equilibrium points. Eccentricity damping from the disk leads to a final equilibrium
configuration thatwe predict precisely analytically. The fact that observedmulti-exoplanetary
systems are rarely seen in resonances suggests that in most cases the resonant configurations
achieved by migration become unstable after the removal of the protoplanetary disk. Here we
probe the stability of the resonances as a function of planetary mass. For this purpose, we fic-
titiously increase themasses of resonant planets, adiabaticallymaintaining the low-amplitude
libration regime until instability occurs. We discuss two hypotheses for the instability, that of
a low-order secondary resonance of the libration frequency with a fast synodic frequency of
the system, and that of minimal approach distance between planets. We show that secondary
resonances do not seem to impact resonant systems at low amplitude of libration. Resonant
systems are more stable than non-resonant ones for a givenminimal distance at close encoun-
ters, but we show that the latter nevertheless play the decisive role in the destabilization of
resonant pairs. We show evidence that as the planetary mass increases and the minimal dis-
tance between planets gets smaller in terms of mutual Hill radius, the region of stability
around the resonance center shrinks, until the equilibrium point itself becomes unstable.
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1 Introduction

Super-Earths (SE) are planets with a mass between 1 and ∼ 20 Earth masses or a radius
between 1 and ∼ 4 Earth radii, and so far discovered with orbital period typically shorter
than ∼ 100 days. They are estimated to orbit 30–50% of Sun-like stars (Mayor et al. 2011;
Howard et al. 2012; Fressin et al. 2013; Petigura et al. 2013), and multi-planetary systems are
not rare. The fact that close-in SE systems form so frequently around stars, but not always (for
instance, not in the Solar system) is an interesting constraint on planetary formation models.

It is generally expected that SEs form (mostly) within the lifetime of the protoplanetary
disk of gas, and therefore, regardless of whether they form in the inner or outer part of the
disk, they should undergo radial migration toward the central star, as a result of planet–disk
interactions (Ogihara et al. 2015; Izidoro et al. 2017). Migration brings the SEs to the inner
edge of the disk, where inward migration stops (Masset et al. 2006). For this reason, the SEs
are captured into mutual mean motion resonances, where the ratios of orbital periods are
equal to the ratios of integer numbers. This is observed in all simulations (e.g., Terquem and
Papaloizou 2007; Cresswell andNelson 2008;Morbidelli et al. 2008) and the aforementioned
(Ogihara et al. 2015; Izidoro et al. 2017).

Due to this renewed interest in resonant captures, in the first part of this paper we revisit
the problem of capture in first-order resonances of two equal-mass coplanar planets in con-
vergent migration, using a semi-analytical approach and numerical simulations. In Sect. 2
we compute analytically the locus of equilibrium points of first-order resonances, where
both the resonant and secular oscillations of the planetary orbits have a null amplitude. Our
calculations are developed for unexpanded Hamiltonians, which allows to follow the dynam-
ics up to arbitrarily large eccentricities (e.g., Beaugé et al. 2006; Michtchenko et al. 2006).
We compare the results with those obtained with first- and second-order expansions of the
Hamiltonian in the eccentricity, showing qualitative and quantitative disagreements. The
quantitative accuracy of our results is validated with simulations in which planets are forced
to migrate toward each other, without any eccentricity damping. These simulations have to
follow the loci of the equilibrium points and show perfect agreement with the unexpanded
model.Moreover, we calculate the two frequencies of libration around the equilibrium points,
therefore obtaining a complete understanding of the system; we again check the validity of
the analytical calculations against numerical simulations in which the amplitudes of resonant
and secular librations are slightly excited and the frequencies of oscillation of the semimajor
axis and the eccentricity are measured. In Sect. 3 we introduce the eccentricity damping
exerted by the disk onto the planets. This leads to a final equilibrium configuration where
convergent migration stops. The analytic calculation of the equilibrium eccentricities and
semimajor axes ratio is presented in “Appendix.” We check against numerical simulations
the validity of these analytical predictions, showing excellent agreement.

Although resonant capture is typical of migration simulations, the observed SEs systems
show little preference for near-integer period ratios and their orbital separations are usually
much wider than those characterizing planets in resonant chains. Izidoro et al. (2017) showed
that this observation is not inconsistentwith themigration/resonant trapping paradigm. In fact,
simulations show that after the removal of the disk of gas, the resonant planetary systems often
become unstable. Izidoro et al. (2017) showed that the observations are very well reproduced
if the fraction of the resonant systems that eventually become unstable exceeds 90%. The
reasons for these instabilities, however, are unexplained.

Matsumoto et al. (2012) studied numerically the stability of resonant multi-planetary
systems for high-integer first-order mean motion resonances. They built the desired resonant
configuration by simulating the Type I migration phase in a protoplanetary disk of gas; then
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they slowly depleted the disk. They observed that there is a critical number of planets above
which the resonant systems go naturally unstable, with a crossing time comparable to that of
non-resonant systems, and studied how this number changes with the planetary masses and
resonant order. In other words, they demonstrated that given the planetary masses, there are a
limit number of planets that can form a stable resonant chain or, given the number of planets,
there is a limit mass for stability. The reason of the instability, however, was not discussed.

Thus, in the second part of this paper we address why resonant planets become unstable
if they are too massive. We focus here on a system of two coplanar planets and study the
stability of the resonant center as a function of the planets’ masses (assumed to be equal for
simplicity). In a subsequent work, we will generalize this study to more populated resonant
chains.

Again, we follow a double approach: analytic and numeric. In Sect. 4 we start from a
pair of small-mass planets deep in resonance and we slowly increase their masses. The mass
growth preserves, by the adiabatic principle, the original small libration amplitude. In this
way we can explore the stability of the resonance center up the threshold mass for instability.
At the same time, we detail how one can follow analytically the evolution of the system
to a good approximation up to high value of the planetary masses. To understand why the
planets ultimately become unstable, we compare the numerical evolution of the system with
an analytically computed map of secondary resonances (resonances between the libration
frequencies or between a libration frequency and one of the short periodic harmonics) as well
as amap ofminimumapproach distance between the planets, finding that one of themmatches
well the instability limit observed in the numerical simulations. Finally, we summarize our
results in Sect. 5.

2 Planetary Hamiltonian

We start by considering the Hamiltonian for the planar three-body problem, in canonical
Poincaré coordinates (Poincare 1892), pi , ri , i = 1, 2:

H = Hkepl + Hpert,

Hkepl = M∗ + m1

2M∗
p21
m1

− GM∗m1

‖r1‖ + M∗ + m2

2M∗
p22
m2

− GM∗m2

‖r2‖ , (2.1)

Hpert = p1·p2
M∗

− Gm1m2

�
,

where M∗ is the mass of the central star, m1 and m2 are the masses of the two planets, G is
the gravitational constant, and� = ‖r1 −r2‖ is the distance between the two planets. Recall
that with respect to the positions and velocities (ui , u̇i ) in a barycentric inertial reference
frame, the canonical Poincaré coordinates are given by r0 = u0, ri = ui − u0, i = 1, 2
for the positions, and p0 = ũ0 + ũ1 + ũ2, pi = ũi , i = 1, 2 for their conjugated momenta,
where ũ0 = M∗u̇0, ũi = mi u̇i , i = 1, 2 are the linear (barycentric) momenta of the bodies. In
Cartesian coordinates, for a given planet, the heliocentric positions r = (x, y) and barycentric
velocities v = (vx , vy) are related to the orbital elements by the usual formal relationships

x = a(cos E − e) cos� − a
√
1 − e2 sin E sin�,

y = a(cos E − e) sin� + a
√
1 − e2 sin E cos�,

vx =
(
−a sin E cos� − a

√
1 − e2 cos E sin�

) n

1 − e cos E
, (2.2)
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vy =
(
−a sin E sin� + a

√
1 − e2 cos E cos�

) n

1 − e cos E
,

where a is the semimajor axis, e is the eccentricity, E is the eccentric anomaly, � is the
longitude of the pericenter, and n = √

G(M∗ + m)/a3 is the mean motion. Note that the
orbital elements defined in this way are different from those usually defined by astronomers,
which are built from the same relationships but using the heliocentric velocities. For simplicity
we restrict to coplanar motions for the planets, so there is no z component, no inclination
and no ascending node. All quantities relative to the inner and outer planet will be denoted
with subscripts 1 and 2, respectively. In order to make use of the orbital elements defined
from canonical Poincaré variables and at the same time maintain the canonical nature of the
system, we introduce the modified Delaunay action-angle variables (�, �, λ, γ ) given by

� = μ
√
G(M∗ + m)a, λ = � + �,

� = �(1 −
√
1 − e2) � �e2/2, γ = −�, (2.3)

where μ = M∗m
M∗+m is the reduced mass, λ is the mean longitude, and � = E − e sin E is the

mean anomaly. In these variables, the Keplerian partHkepl of the Hamiltonian (2.1) takes the
form

Hkepl = −G2(M∗ + m1)
2μ3

1

2�2
1

− G2(M∗ + m2)
2μ3

2

2�2
2

. (2.4)

We impose a first-ordermeanmotion resonance between the two planets, that is we assume

that the two mean motions n1 =
√
G(M∗ + m1)/a31 and n2 =

√
G(M∗ + m2)/a32 satisfy the

resonance condition kn2 − (k − 1)n1 ∼ 0, where k ∈ Z is a positive integer, k ≥ 2. We
now average the Hamiltonian over the fast angles. In fact, since the Keplerian part Hkepl

does not depend on the angles, only the perturbation Hamiltonian Hpert needs averaging.
We note that we need to integrate Hpert, e.g., with respect to the angle λ1 over the interval
[0, 2kπ], corresponding to k revolutions of the inner planet around the star (which in turn
by the resonance condition is equivalent to (k − 1) revolutions of the outer planet), in order
to fully recover the periodicity of the Hamiltonian. This leads to a new averaged perturbing
Hamiltonian which we denote with Hres:

Hres := H̄pert = 1

2kπ

∫ 2kπ

0
Hpert dλ1; (2.5)

the full averaged Hamiltonian is therefore

H̄ = Hkepl + Hres. (2.6)

From an analytical perspective, we remark that only certain combinations of the angles will
appear in the Fourier expansion of the averaged Hamiltonian H̄. Indeed, by the d’Alembert
rules, after the averaging procedure, of all angles depending explicitly on λ1 and λ2, only
those of the form

j
(
kλ2 − (k − 1)λ1

) + j1γ1 + j2γ2, j, j1, j2 ∈ Z
+, j1 + j2 = j, (2.7)

will survive. With this in mind, in order to simplify the expression of the resonant harmonics
appearing in the Hamiltonian Hres one can introduce the following canonical action-angle
variables (Sessin and Ferraz-Mello 1984):
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K = �1 + k − 1

k
�2, κ = λ1,

� = �2/k, θ = kλ2 − (k − 1)λ1. (2.8)

The newly defined angle κ does not appear explicitly in the Hamiltonian, making its con-
jugated action K a constant of motion. The significance of the conservation of K is already
explained in Batygin and Morbidelli (2013); in particular, it yields the location of exact
Keplerian resonance from the observed values of semimajor axes. As we will see, especially
at low eccentricities the semimajor axes of the two planets deviate away from the nominal
commensurability, by an amount which also depends on the planetary masses. Therefore,
the observed values of a1 and a2 do not alone reveal how close the planets are to resonance,
nor they represent the nominal values ā1 and ā2 of the semimajor axes that satisfy the exact
Keplerian resonant relationship ā1/ā2 = ((k − 1)/k)2/3. However, by calculating from their
observed values the value of the constant K, and imposing in the formula

K
�2

= μ1

μ2

√
(M∗ + m1)

(M∗ + m2)

a1
a2

+ k − 1

k
, (2.9)

the condition of exact resonance, α = a1/a2 = ((k − 1)/k)2/3, one can obtain ā2 from
ā2 = (�̄2/μ2)

2/(G(M∗ + m2)) and ā1 from ā1 = ((k − 1)/k)2/3ā2.
Considering now the remaining three pairs of canonical action-angle variables, a final

canonical transformation is made:

�1 = �1 + �2, ψ1 = θ + γ1,

�2 = −�2, δγ = γ1 − γ2, (2.10)

� = � − �1 − �2, θ ′ = θ.

Using again (2.7), it is trivial to see that in the Hamiltonian H̄ only angles of the form

jψ1 + j2δγ, j, j2 ∈ Z
+ (2.11)

will appear, i.e., angles in which θ ′ does not enter explicitly, making � our second constant
of motion and thus reducing to two the degrees of freedom of our system. Note that the
two constants of motion � and K are linked to the total angular momentum L, which in
these mixed variables (orbital elements derived from heliocentric positions and barycentric
velocities) is given by

L = m1

√
G(M∗ + m1)a1(1 − e21) + m2

√
G(M∗ + m2)a2(1 − e22); (2.12)

to first order in the masses, we have K + � = L.

2.1 First- and higher-order expansions of the Hamiltonian

An analytical treatment of first-order resonances making use of an expansion of the Hamil-
tonian up to first order in the eccentricities was presented in Batygin and Morbidelli (2013),
yielding a qualitative description of the resonant dynamical evolution of two planets. Fol-
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lowing this approach, the resonant Hamiltonian Hres in variables (2.3) takes the form

Hres = −G2M∗m1m3
2

�2
2

(

f (1)
res

√
2�1

�1
cos

(
kλ2 − (k − 1)λ1 + γ1

)

+ f (2)
res

√
2�2

�2
cos

(
kλ2 − (k − 1)λ1 + γ2

)
)

,

(2.13)

where the coefficients f (1)
res and f (2)

res depend (weakly) on the semimajor axis ratio. Note that
since this is an expansion up to first order in e and the two terms in parenthesis are already
of order

√
� = O(e), we can evaluate � on the nominal values of the semimajor axis, thus

fixing them to �̄1 and �̄2. By doing so, the coefficients fres can be truly considered constant;
one may find in Murray and Dermott (2000) formulae to obtain their numerical value in the
case of different resonances. After the change of variable (2.8) the resonant HamiltonianHres

takes the simple form

Hres = −G2M∗m1m3
2

�̄2
2

(
α1

√
2�1 cos(θ + γ1) + α2

√
2�2 cos(θ + γ2)

)
, (2.14)

where αi = f (i)
res /

√
�̄i , i = 1, 2. The full Hamiltonian still of course retains the form

H̄ = Hkepl+Hres as in (2.6).While thisHamiltonian contains at themoment twoharmonics, it
is actually integrable, since it is possible to carry out a series of canonical changes of variables,
following, e.g., the approach in Sessin and Ferraz-Mello (1984), which makes it dependent
on only one harmonic and extracts another integral of motion. This advantageous reduction
can be used to obtain a general description of the dynamics (e.g., Batygin and Morbidelli
2013; Ramos et al. 2017). However, it is insufficient when one confronts even qualitatively
the prediction of this theoretical model with results from numerical simulations, as we will
see in the next section, where we compute the locus of equilibrium points (i.e., periodic orbits
of the full problem) as a function of the system’s angular momentum.

Higher-order expansions are possible. However, theHamiltonian can no longer be reduced
to one depending on a single combination of angles, i.e., it will not be integrable. Moreover,
while they represent amore faithful representation of the real dynamics, it is still not adequate
enough for goodquantitative accordwith the results of numerical simulations, aswewill see in
the next section. Therefore, we develop below the formalism for unexpanded Hamiltonians,
using a semi-analytical approach (i.e., computing the integral (2.5) numerically), already
employed, e.g., in Moons and Morbidelli (1993), Moons and Morbidelli (1995), Sidorenko
(2006), Pichierri et al. (2017) for the restricted problem and in Beaugé et al. (2006) and
Michtchenko et al. (2006) for the full three-body problem.

2.2 Equilibrium points of the averaged Hamiltonian

We now consider the averaged Hamiltonian H̄(�1, �2, ψ1, δγ ;�) as a system with two
degrees of freedom with parametric dependence on the value of �, the action defined in
(2.10) (note that the symbol� usually denotes the longitude of the node, which is not defined
in this case given the planar nature of the problem), and look for its equilibrium points. The
Hamiltonian also parametrically depends on K, but as we have seen this variable encodes
the location of exact resonance, for which a2/a1 = ā2/ā1 = (k/(k − 1))2/3 =: R̄, as well
as the value of the planetary masses. Once we have fixed m1, m2 and k, we can choose units
in which ā2 = 1, so that K obtains a natural value relative to the problem at hand.
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Equilibrium points correspond to stationary solutions and are therefore found by solving
simultaneously in the variables (�1, �2, ψ1, δγ ) = x the set of equations

∂H
∂�1

= 0,
∂H
∂�2

= 0,
∂H
∂ψ1

= 0,
∂H
∂δγ

= 0, (2.15)

for different values of the constant of motion �. Because of the analytical properties of the
Hamiltonian H̄, namely the fact that it contains only cosines of angles of the form (2.11),
any combination of equilibrium values ψ1,eq = 0, π and δγeq = 0, π will satisfy the last
two equations in (2.15). Taking any of these possible combination, we solve the first two
equations in (2.15) for �1 and �2, and we find two values (�1,eq, �2,eq). We then have
to check that the point xeq = (�1,eq, �2,eq, ψ1,eq, δγeq) is a stable equilibrium point for
the Hamiltonian H̄. In principle, the last two equations in (2.15) could be satisfied for a
combination of values of ψ1 and δγ different from 0, π (asymmetric equilibria), but this is
the case only if all symmetric equilibria are unstable. This is because in the adiabatic limit in
which one takes the second (slower) degree of freedom (�2, δγ ) as fixed, the Hamiltonian
can be considered as describing an integrable one-degree-of-freedom system in the pair of
(faster) variables (�1, ψ1), with slowly varying parameters corresponding to the slow degree
of freedom. It is well known that for a one-degree-of-freedom system and at the relatively
low eccentricities that are obtained in the process of capturing into resonance, asymmetric
equilibria are possible only if a bifurcation occurs which changes the nature of the symmetric
equilibria (which always exist) from stable to unstable. Thus, if one finds a stable symmetric
equilibrium, the search for asymmetric stable equilibria can be avoided. The condition for
stability of the equilibria is discussed in the next section and is the usual criterion whereby
one imposes that the eigenvalues of the matrix which describes the linear approximation of
the system around the equilibrium be purely imaginary.

By changing the value of the constant � we obtain different equilibrium configurations,
and once an equilibrium point in the canonical variables (�1, �2, ψ1, δγ ) is obtained, we can
easily work our way back through the canonical transformation and obtain the equilibrium
values for the semimajor axes and eccentricities of the two planets, which we denote with
a1,eq, a2,eq, e1,eq, e2,eq. This results in the stable equilibrium curves shown in Figs. 1 and 2,
which are found for ψ1,eq = 0 and δγeq = π .

We should immediately remark one property of these curves. As one can see from the
first-order expansion (2.13), the rates of precession of the perihelia are estimated by γ̇ ∝
1/

√
� ∼ 1/e, which grows substantially as e → 0. Therefore, in order to preserve the

resonant condition ˙(θ + γ ) ∼ 0, it is necessary to have θ̇ = kλ̇2 − (k − 1)λ̇1 � 0, i.e.,
a2/a1 � R̄ = (k/(k − 1))2/3. Indeed, we see from Fig. 1 that as the eccentricities vanish the
equilibrium points deviate away from exact Keplerian commensurability, in a way that the
semimajor axis ratio a2/a1 grows as e ↘ 0. This effect, as is shown in Fig. 2, is more and
more evident as the planetary mass increases, since γ̇ ∝ m. As a consequence, to sample
these low-eccentricity equilibrium points with the correct value of �, it is necessary to plug
into its analytical formula values of the semimajor axes such that a2/a1 = R̄ + δ(a2/a1).

We also point out the different equilibrium curves that one obtains using the expanded
Hamiltonians and the non-expanded averaged Hamiltonian (Fig. 1). The case of the 2–1
mean motion resonance is the most striking. Using a first-order expansion, as the semimajor
axis ratio approaches the exact Keplerian ratio one finds equilibrium points with increasing
values of e2 (and e1). This is qualitatively different from the result obtained with higher-order
expansions and the averaged Hamiltonian: we see that e2 reaches a maximum value and then
starts approaching zero again. (Note that although e2 ∼ 0, e1 is large, so high-order terms
are important.) This fact is known [e.g., Beaugé et al. (2006) and Michtchenko et al. (2006)
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(a) (b)

(c)

Fig. 1 Equilibrium curves for three different first-order mean motion resonance, calculated as described in
the text using the first-order expansion (2.13) (dashed blue line), a second-order expansion (dotted red line)
and the full averaged Hamiltonian (2.5) (continuous green line). Here we put m1 = m2 = m = 10−5M∗.
The equilibrium values for the angles are ψ1,eq = 0 and δγeq = π . The orange vertical line indicates the

location of exact Keplerian resonance, a2/a1 = ā2/ā1 = (k/(k − 1))2/3. Note the discrepancy between
the equilibrium curves with and without the expansion of the resonant Hamiltonian, due to the presence of
higher-order harmonics which are not taken into account in the expanded Hamiltonians. a 2–1 mean motion
resonance, b 3–2 mean motion resonance, c 4–3 mean motion resonance

using the numerical averaging of the Hamiltonian, Hadjidemetriou (2002) and Antoniadou
and Voyatzis (2014) tracking periodic orbits]. We further note that while the expansion to
order 2 in the eccentricities captures this behavior, it does not agree quantitatively with
the averaged Hamiltonian. On the other hand, the analytical curve obtained with the full
averaged Hamiltonian is in perfect agreement with a simulation in which two planets on
initially circular orbits are subjected to convergent migration resulting in resonant capture
(Fig. 3). These simulations will be detailed in Sect. 3, but they are expected to track the
locus of equilibrium points as the semimajor axis ratio a2/a1 decreases toward the Keplerian
resonant ratio. Because here we apply no damping on the eccentricities, the latter are a priori
free to grow toward unity. We observe that at the point in which e2 vanishes, δ� flips from
π to 0, which is evident from Fig. 3c. Indeed, the equilibrium point on the e2 cos(δ�) axis is
initially on the negative side, and as the angular momentum decreases it moves to the positive
axis. This transition from δ� = π to 0 is smooth, and this is why the planets stay at the
equilibrium point, without triggering secular oscillations.

We note that at higher values of e these equilibrium points found for δγ = π (or δγ = 0
in the case of the 2–1 resonance) might be unstable, and stable asymmetric equilibrium
points for different values of δγ are possible (see for example Beaugé et al. 2003, 2006,
for a detailed study on the 2–1 mean motion resonance); in the case reported here, they are
unstable for e1 between about 0.28 and 0.35 corresponding to e2 between about 0.08 and
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(a) (b)

(c)

Fig. 2 Equilibrium curves for the three different first-order mean motion resonance, calculated as described in
the text using the full averagedHamiltonian (2.5),with different values for the planetarymassesm1 = m2 = m.
Here again we have fixed ψ1,eq = 0 and δγeq = π . The orange vertical line indicates the location of exact

Keplerian resonance, a2/a1 = ā2/ā1 = (k/(k − 1))2/3. a 2–1 mean motion resonance, b 3–2 mean motion
resonance, c 4–3 mean motion resonance

0.11. We should also note that a similar behavior of the equilibrium curves, where they reach
a maximum value in e and then bend down to reach 0, is also present in the other resonances
that we have considered, but that this happens at much higher values of e. In the case of the
3–2 and 4–3 resonances, it is e1 that reaches a maximum value, of e1 � 0.22 and e1 � 0.12,
respectively. However, these circumstances occur at high values of the eccentricities and are
beyond the scope of this work.

2.3 Frequencies in the limit of small amplitude of libration

In this section we calculate the frequencies of the system around an equilibrium point assum-
ing small amplitude of libration by considering the linearized system near the equilibrium
point. As we will see in the next section, we expect that in our numerical simulations the
planets will be very close to the equilibrium in the variables (2.10), and will move from
an equilibrium corresponding to some value of the constant of motion � to the next while
preserving a small amplitude of libration. We then discuss how we can check numerically
the validity of our calculations.

Near the equilibrium point xeq the Hamiltonian H̄(�1, �2, ψ1, δγ ) = H̄(x) can be
approximated as

H̄(x) = H̄(xeq) + H̄lin(x) + H̄quad(x) + O(x3). (2.16)

The linear part H̄lin(x) ≡ 0 by definition of equilibrium point, and the quadratic part is given
by
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(a) (b)

(c)

Fig. 3 Result of a numerical simulation for two planets in the 2–1 mean motion resonance, with planetary
masses m1 = m2 = m = 10−5M∗. In panel a we show both eccentricities e1 (in blue) and e2 (in black); in
panel b the resonant angles ψ1 = θ + γ1 (in blue) and ψ2 = θ + γ2 (in black); in panel c the angle δγ . In all
panels the quantities are given in terms of the semimajor axes ratio a2/a1, to easily compare the results with
the panels in Fig. 1a; in panel a we also superimpose the equilibrium curves, shown in dotted gray lines, for
δγ = π and δγ = 0. We again indicate in all plots the location of exact Keplerian resonance with an orange
vertical line. The green points correspond to the equilibrium configuration of this system when e2 � 0.006 is
maximal; the red points correspond to the equilibrium configuration of the system when e2 has then reached
the value 0. We observe that the evolution of the orbital parameters is very well described by our analytical
curves; the large oscillations, visible especially in panel a, are short periodic, due mainly to the fast synodic
angle λ1 −λ2, which is averaged out in the analytical model. We notice that when e2 reaches 0 (red point) the
value of δγ is changing from π to 0. This happens without triggering large oscillations as the system is still
smoothly following the curve of stable equilibrium points, see text for details. a e1 and e2, b resonant angles
ψi = θ + γi , c angle δγ

H̄quad(x) = 1

2
(x − xeq)ᵀC(x − xeq), (2.17)

where C := H(H̄(xeq)) is the Hessian of H̄ at the equilibrium point xeq. Dropping the unim-
portant constant term H̄(xeq) and ignoring the higher-order terms, the linearized Hamiltonian
system of equation then becomes

d

dt
(x − xeq) = J∇H̄quad = JC(x − xeq), (2.18)

where ∇ = ∇x, and J is the symplectic matrix

J =
(
0 −I

I 0

)
. (2.19)

The study of the stability of the equilibrium then reduces to writing thematrix JC and finding
its eigenvalues. Moreover, given that the system is Hamiltonian, it is well known that the
four purely imaginary eigenvalues come in pairs, (+ iω1,− iω1) and (+ iω2,− iω2), with
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ω1,2 > 0. These ω1 and ω2 are the two characteristic frequencies of the system at vanishing
amplitude of libration around the equilibrium point: they are associated, respectively, with
the (faster) libration of the resonant pair (�1, ψ1), and with the (slower) secular libration to
which the pair of variables (�2, δγ ) is subjected. We expect that ω1 will be much higher
than ω2, except at vanishing eccentricities, where the system exhibits a fast precession of the
perihelia.

We check that our analytical calculations of the frequencies are correct as follows. We
first take a system of two planets well in resonance, e.g., in the 3–2 mean motion resonance,
λ̇1 � 3

2 λ̇2, but not exactly on the equilibrium point. Here we take m1 = m2 = 10−5M∗.
We then observe the evolution of the orbital elements a and e, from which we obtain that of
the four actions, and we record �̄1, �̄2, K̄, �̄ their mean values. Note that the mean values
are needed because the system is undergoing a fast evolution due to the non-resonant angles,
which have been averaged out in our analytical model. In particular, e.g., in Fig. 4a we notice
the prominent effect of the harmonic relative to the circulating angle λ1−λ2, with a frequency
that can be calculated as ωλ1−λ2 = (λ̇1 − λ̇2) = 1

3 λ̇1 = 1
32π/(a3/21 ) � 65.4, for the actual

value of a1 = 0.1008 AU and assuming GM∗ = (2π)2, that is a period Tλ1−λ2 � 0.096 years
forM∗ = M�.We then look at the two angles, checking that the resonant angleψ1 is librating
(around 0) and noticing that δγ librates (around π ); we therefore fix ψ̄1 = 0 and ¯δγ = π .
Using the values for K̄, �̄ and of the two angles ψ̄1 = 0, ¯δγ = π , we calculate analytically
an equilibrium point xeq as explained above. This equilibrium point well represents the state
of the system, with �1,eq and �2,eq differing from the observed mean values �̄1, �̄2 by
less that 0.03%. For this equilibrium point we calculate the two frequencies ω1 � 0.62 and
ω2 � 0.23, i.e., periods of T1 = 2π/ω1 � 10.5 years and T2 = 2π/ω2 � 26.9 years. In order
to clearly see these two frequencies in a numerical simulation, we excite the system’s initial
condition, in the semimajor axes ratio and in eccentricity, respectively, thereby increasing the
amplitude of librations relative to the resonant angleψ1 and the angle δγ . In practice, we first
take the same initial conditions of the original unexcited system, and slightly excite the value
of R = a2/a1, e.g., by forcingly change the initial value a2(0) of a2 to (1+ ε)a2(0), where ε

is a small number. We plot the resulting evolution of the semimajor axis and eccentricity for
the inner planet in Fig. 4, where we see clearly an oscillation with period T1 � 10.5 years
(panels b, d). Similarly, we take again the same initial condition of the unexcited system
and slightly excite the value of e2(0) to (1 + ε̃)e2(0), where ε̃ is a small number. We plot
the resulting evolution of the semimajor axis and eccentricity for the inner planet in Fig. 5,
where we now also see an oscillation with period T2 � 26.9 years on top of the one with
period T1 � 10.5 years (panel d). In both Figs. 4 and 5 we overplot the result of the analytical
explicit integration of the linearized equations of motion (2.18) around the equilibrium point.
These follow very closely the evolution of the three-body integrations.

3 Convergent inwardmigration in disk and resonant capture

With our resonant model at hand, we now proceed with the study of our first step in our
numerical and analytical investigations, that of resonant capture in a protoplanetary disk.
This is an efficient method to obtain planets deeply in mutual mean motion resonance (e.g.,
Matsumoto et al. 2012; Ramos et al. 2017). We start with two planets of equal mass, m1 =
m2 = m, typically m/M∗ = 10−5 − 10−2, on coplanar orbits, embedded in a protoplanetary
disk. We also write μ1 = μ2 = M∗m

M∗+m =: μ. Our numerical simulations consist of the
implementation of a symplectic three-body integrator (swift_symba) to which fictional
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analytical dissipative forces are added that describe, in the limit of the purposes of this study,
the interaction between the planets and a protoplanetary disk. In what follows, we describe
these forces, dropping for ease of reading the index i = 1, 2 to denote the planets’ elements
and parameters.

For each planet, the effect of the disk–planet interaction can be viewed as composed
of two separate contributions, one operating on the eccentricity e and one operating on the
semimajor axis a. Concerning the effect of the gas on the eccentricity e, our code implements
a damping effect of the disk as

ėdamp := − e

τe
, (3.1)

where τe is given, in the limit of vanishing eccentricities, by

τe � τwave

0.780
, (3.2)

and τwave is the typical Type I migration timescale, given by

τwave = M∗
m

M∗
�a2

h4
√
GM∗/a3

(3.3)

(see, e.g., Cresswell and Nelson 2006; Baruteau et al. 2014). The parameters � = �(r) =
�0r−α and h = h(r) = H/r ∝ (r/r0)β are the surface density and aspect ratio of the disk,
respectively, and are evaluated at the position of the planet. The flaring index β is taken to
be β = 0.25 and H = H(r) = zscale(r/r0)βr is the scale height. We take h|5.2AU = 5% so
that zscale = 0.05 × (5.2 AU/r0)−β . The parameter α sets the surface density profile of the
disk; here we take α = 1.

Secondly, the disk–planet interaction results in a torque and therefore in an exchange of
angular momentum L. For a planet,

L = m
√
G(M∗ + m)a(1 − e2). (3.4)

The torque T := L̇ is taken here to be negative, so that the effect on the semimajor axis a is
that of inward, Type I migration. It is modeled in our simulations as

L̇mig = − L
τmig

, (3.5)

where τmig is given, again in the limit of vanishing eccentricities, by

τmig � 2
τwave

(2.7 + 1.1α)
h−2, (3.6)

where again we take α = 1. To calculate the resulting effect on the semimajor axis a due to
this planet–disk interaction, we take

L̇ = dL
dt

= m
√
G(M∗ + m)

(
ȧ

2
√
a

√
1 − e2 −

√
a√

1 − e2
eė

)
, (3.7)

and dividing by
√
a we obtain

ȧ

a
= 2

L̇
L + 2eė

1 − e2
= − 1

τa
− p

e2

τe
, (3.8)
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where τa = τmig/2 and p � 2 for small e. It is customary to introduce the quantity K = τa/τe
which we call K -factor (cfr. Ramos et al. 2017). Note that

K = τa

τe
� 0.780

2.7 + 1.1
h−2 : (3.9)

given that disks are very thin, e.g., here h = O(5 × 10−2), we see that the K -factor is very
large, of the order of at least K = O(102), meaning that the typical timescale of eccentricity
damping is much shorter than that of migration. This allows us to assume that the planets
approach the resonance on circular orbits, as anyfinite (but relatively small) initial eccentricity
would be immediately damped by the disk.

In order to insure convergentmigration and resonant capture, we need to stop themigration
of the inner planet, since two equally massive planets would migrate inward at roughly the
same rate and resonant capture would not occur (e.g., Ramos et al. 2017). To do this, we
simulate the effect of a disk edge, which corresponds to a sharp drop in � as r decreases. In
this conditions, Masset et al. (2006) showed that a coorbital corotation torque is activated,
which is positive and dominates the inward Type I torque. Thus inward migration stops at
the inner edge of the disk. Masset et al. (2006) called this a planet trap and we follow this
terminology here. For simplicity, the trap is modeled here by smoothly reversing the Type
I torque. This is not what happens in reality. Modeling the real effects would require an
appropriate implementation of the corotation torque, and that would depend on the � profile
at the edge. Our recipe, however, is effective to stop the inward migration of the innermost
planet and to retain the second planet in resonance, that is to exhibit the same effects observed
in hydrodynamical simulations (Morbidelli et al. 2008). As we approach the disk edge dedge
(at 0.1 AU in our simulations), we implement the planetary trap by smoothly reversing the
sign of the migration in order to stop the inner planet from migrating all the way into the star.
This is achieved by dividing τa by a factor τa,red given by

τa,red =

⎧
⎪⎪⎨

⎪⎪⎩

1 a ≥ dedge(1 + hedge),

5.5 × cos
(

((dedge×(1.+hedge)−a)2π)

(4hedge×dedge)

)
− 4.5 dedge(1 − hedge) ≤ a ≤ dedge(1 + hedge),

−10 0 ≤ a ≤ dedge(1 − hedge),

(3.10)

where hedge = zscale(dedge/r0)0.25 is the aspect ratio of the disk at the edge.
As initial conditions in our simulations, we first assume circular orbits, e1,init = e2,init = 0,

see above. Secondly, we choose the initial semimajor axes to be just outside a specific first-
order mean motion resonance, a2,init � (k/(k − 1))2/3a1,init , k = 2, 3, . . . . The two planets
will migrate inward at roughly the same rate due to their interaction with the disk; the first
planet will then reach the disk edge, where our imposed reversal of the sign of migration will
cause it to stop migrating. The still migrating outer planet approaches the first planet and is
then automatically locked in the desired mean motion resonance as a result of convergent
Type I migration. The behavior of the planets as they approach resonance can be understood
using adiabatic theory, provided that themigration timescale is much longer than the resonant
libration timescale (see Sect. 2.3 for the latter). When the planets are far from resonance,
the damping effect of the disk ensures that their orbits are circular. But the circular orbit
is also the limit of the curve of the resonant equilibria for large a2/a1 ratio (see Figs. 1,
2). Thus, the planets are very close to the equilibrium in the variables (2.10) corresponding
to their large a2/a1 ratio. If the evolution is adiabatic, the amplitude of libration around
the equilibrium point (more precisely the value of the libration action—(Arnold 1963)) is
preserved (Neishtadt 1999; Neishtadt et al. 2008; Henrard 1993). Given that initially this
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(a) (b)

(c)

Fig. 6 Typical evolution of a system during capture into 3–2 mean motion resonance, for two planets of equal
mass m1 = m2 = m = 10−5M∗. All quantities are given as a function of the semimajor axes ratio a2/a1
in order to compare with the analytical calculations carried out in Sect. 2; to further aid the comparison, we
superimposed to all plots the analytical values found using our averaged model with dashed lines. Note that
the initial configuration is at the far right of the plots and with vanishing eccentricity, so we are very close
to the equilibrium point, i.e., in a configuration of small amplitude of libration; this property of the system is
conserved during its evolution as explained in the text. In this simulation, both the migration and eccentricity
damping effects of the disk on the planets are active, so that the system eventually reaches a final configuration
of low-amplitude libration around an equilibrium point for some value of the angular momentum. This final
configuration is stable, see text for details. Note that the amplitude of libration of ψ1, ψ2 and δγ shrinks as
a2/a1 decreases. This is because initially the eccentricity is very small and therefore even a small oscillation
around the equilibrium point can cause a large excursion in the angles. a e2, b resonant angles ψi = θ + γi ,
c angle δγ

amplitude is close to zero, it will remain close to zero throughout the evolution. In reality, the
application of the adiabatic principle can be done only if the non-conservative forces change
the parameters of the Hamiltonian, and not if they affect directly its variables. If there is no
damping on the eccentricities but only a drag on the semimajor axes, Deck andBatygin (2015)
show that at loworder in e, the dissipation only acts on the otherwise constant ofmotion� (see
2.10) and does not act on the dynamical variables �1, �2, ψ1, δγ . In this case, the adiabatic
principle can be used. Thus, as the planets approach each other, they have to follow the locus
of equilibrium points computed in Sect. 2.2 and shown in Figs. 1 and 2. This is precisely what
we observed in Fig. 3 for the 2–1 resonance. Thus, as the planets approach each other, their
eccentricities start to grow. As shown in Fig. 3, if there were no eccentricity damping, at least
one of the two planets’ eccentricities would grow indefinitely. However, as discussed above,
the disk exerts an eccentricity damping. This has two effects. On the one hand, it stops the
eccentricity growth and keeps the planets at a fixed semimajor axes ratio. That is, the mutual
planet configuration freezes out, as we show in Fig. 6 for the 3–2 mean motion resonance.
We discuss how to describe analytically this equilibrium configuration in “Appendix A.”
On the other hand, it breaks the adiabatic approximation. The orbit either shrinks toward the
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equilibriumpoint,which becomes an attractor, or spiral away from the equilibrium, increasing
the libration amplitude until it escapes from the resonance or reaches a limit cycle (Goldreich
and Schlichting 2014). The conditions for one or the other behavior are quantified in Delisle
et al. (2015) and Deck and Batygin (2015) as a function of planetary masses, damping forces,
resonance index k. We come back to this in “Appendix A”, where we briefly discuss how, for
the purposes of this work, we can ensure that the eventual instability would occur on very
long timescales and by removing the gas early enough we can ignore this complication.

4 Limits of stability as a function of planetary mass

After the equilibrium configuration is attained, we slowly deplete the gas (that is have �

decrease exponentially in Eq. (3.3)). This is done slowly enough and the system does not
move considerably from the equilibrium configuration calculated in the previous section.
We should only note that the damping in the eccentricities has the effect of changing the
equilibrium values of the angles ψ1 and δγ from the ones which are found in the purely
conservative planetary system [see, e.g., Batygin and Morbidelli (2013) for a formula of this
shift, linking ψ1,eq, and δγeq to τe]. This means that when the latter admits stable symmetric
equilibrium points,ψ1,eq, δγeq = 0, π , the non-conservative systemmight seem to contradict
this; however, these arenot asymmetric equilibriumpoints, as they are onlydue to the damping
effect: when this is removed the system reaches the expected equilibrium values of the angles.

Now that we have an effective method for obtaining numerically a planetary system in
mean motion resonance, and to describe its properties analytically, we intend to investigate
its stability. In particular, we study the stability of pairs of equally massive, m1 = m2 = m,
resonant planets by considering their mass as a free parameter. We maintain the notation
μ = mM∗/(m + M∗) for the common reduced mass of the planets.

To perform this study, we can take the resonant equilibrium configurations obtained as
described in the previous section, slowly deplete the gas, and then perform long-term integra-
tions with the resulting orbital configuration as initial conditions, checking if the system exits
the resonance, in which case the resonant configuration is deemed unstable; this analysis can
be then performed for different masses. One might start with the planets already as massive
as desired and repeat the exercise of capture in resonance through interaction with a disk of
gas and then depletion of the gas (e.g., Matsumoto et al. 2012). However, if the region of
high amplitude of libration around the equilibrium point is chaotic, the capture might not
lead to an orbit near the resonant center, so that once the gas is removed an instability may
develop, whereas the orbits might have remained stable if they had had a smaller amplitude
of libration. If instead we take a system of planets deep in resonance and slowly increase
their masses until the system shows instability, we can ensure that we are indeed probing the
region of the phase space around the resonant equilibrium point. For, as long as the rate at
which this increase is performed is small enough, the amplitude of libration around the equi-
librium point will be an adiabatic constant and will be preserved. For simplicity, we chose
a linear law m(t) = m(0) + Mt , where M is a constant (in practice, for the results shown
below, we chose to increase the planetary mass so that it grows by 3 orders of magnitude in
5×104 years; changingm slowly enough, we notice no noticeable difference in the resulting
evolution if one uses different laws or rates of change for m(t)); in our code, we increase
the planetary mass at each integration step. We should stress here that the increase in the
planetary parameter is a purely numerical exercise: one should assign no physical meaning
to it, and the fact of changing the value of m is just a way to explore the stability of deeply
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resonant systems as a function of planetary masses starting from one system that is well in
resonance, the configuration of which one can describe analytically.

Indeed, another advantage of operating this way is that we can follow analytically the
evolution of the system as the mass increases, at least to a very good approximation. To do
this, we look at the quantity

Lspec := L
μ

= m

μ

(√
G(m + M∗)a1(1 − e21) +

√
G(m + M∗)a2(1 − e22)

)
, (4.1)

which we (improperly) call specific angular momentum. This quantity is not exactly constant
as the planetary mass increases, but its value changes very little up to high enough values of
m/M∗, cfr. Fig. 7a.

In the approximationLspec = const, we can follow analytically the evolution of a resonant
system in which the planetary mass parameter m is slowly changing. To do this, consider a
resonant system in the vicinity of an equilibrium point (� ′

1,eq, �
′
2,eq, ψ

′
1,eq, δγ

′
eq) for some

value m′ of m and some value of the integrals of motion K′ and �′. Note now that L =
m
μ

(K + �), i.e., Lspec = m
μ2 (K + �). We can then obtain the values of these actions when

we change m to m′′, by setting

K′′ = m′/(μ′)2

m′′/(μ′′)2
K′, �′′ = m′/(μ′)2

m′′/(μ′′)2
�′, (4.2)

where μ′ and μ′′ are the reduced masses relative to the planetary masses m′ and m′′, respec-
tively. Finally, we find the new equilibrium point (� ′′

1,eq, �
′′
2,eq, ψ

′′
1,eq, δγ

′′
eq) with the new

planetary mass m′′ and these two actions K′′ and �′′ in the same manner as in Sect. 2.2. We
can then closely follow the evolution of the system as we show in Fig. 7, where we have
superimposed the results of a numerical simulation in the case of the 3–2 mean motion res-
onance and our analytical predictions. At the same time we plot the real evolution of Lspec,
against the fixed value used for the analytical calculations.

At this point, a remark is in order. The eccentricity of the equilibrium configuration1 grows
with the planetary masses, as shown in Fig. 7, following roughly a line of constant specific
angular momentum. Instead, the equilibrium eccentricity of planets captured in resonance
by planet–disk interaction is independent of the planetary mass (see Eq. A.20). This means
that capturing planets in the resonance with a massm′ or capturing them with a smaller mass
m′′, which is then grown to m′ after capture, leads to two different configurations. In other
words, the two processes of (a) first capturing the planets in mean motion resonance and then
increasing their masses, and (b) first increasing their masses and then putting them in reso-
nance, do not commute. Nevertheless, by assuming different scale heights of the disk when
the planets are captured and then growing the planetary masses, we can explore numerically
the full m, e2 parameter space characterizing the resonant equilibrium. We will take initial
values of m ranging from 10−5M∗ to 10−4M∗, and initial values of the eccentricities up to
∼ 0.2. Higher values of e are physically unrealistic as eeq,2 ∝ h (cfr. Eq. A.20) and disks
with high aspect ratios are not expected.

The colored dots in Figs. 9 and 10 show the evolution of e2 as the planetary mass grows,
starting fromdifferent initial values, for systems in the 3–2meanmotion resonance.We let the
masses grow until an instability occurs. Denoting bymcrit the mass at which the discontinuity
happens, we do a long-term simulation, over 3 × 107 revolutions of the inner planets, with
a fixed mass m = 0.995 × mcrit to check that the dynamics was still stable up to that point.

1 We are of course referring to the eccentricity in the averaged system, in the full one e would oscillate due
to the fast evolving angles.
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(a) (b)

(e)

(c)

(f)

(d)

Fig. 7 Evolution of a system deep in the 3–2 mean motion resonance as the planetary mass m1 = m2 = m
increases. The initial configuration of the averaged system is a2/a1 = 1.31093, e1 = 0.01112, e2 = 0.01195
and m/M∗ = 1 × 10−5. The true evolution of Lspec along the simulation is plotted in panel a as a function
of m/M∗, see the colored line (the color-coding is reproduced only to indicate the value of m in panels b and
c). The black line represents the approximation Lspec = const used in the analytical calculations, showing
relatively good agreement up to high values of m/M∗. The plot is interrupted at m/M∗ � 5.64 × 10−3,
at which point the system goes unstable. In panels b and c we plot both eccentricities as a function of the
semimajor axes ratio, as they evolve while m increases. We color-code the points based on the value of the
planetary mass (with the same colors used in panel a). We superimpose, with a black line, the result of an
analytical calculation aimed at reproducing the evolution of the system as explained in the text, assuming
Lspec = const. Note that the simulation follows closely the analytical prediction. The oscillations around the
equilibrium points become larger and larger as m increases, but they are short periodic ones, i.e., they are due
to the evolution of the fast angles (the same as those shown in Figs. 4c and 5c) which are averaged out in
the analytical model and are not linked to a growth in the amplitude of resonant libration, which is conserved
adiabatically until the system becomes unstable. Panels d–f show the evolution of the orbital elements as the
mass increases, with again a black line being the result of analytical calculations; since we imposed a linear
increase of the mass with time, this can be seen as an evolution in time. Notice that in this case the outcome
of the instability is a collision, as the two planets eventually merge. a m/M∗ versus Lspec, b a2/a1 versus e1,
c a2/a1 versus e2, d e1 versus m/M∗, e e2 versus m/M∗, f a1, a2 versus m/M∗
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(a) (b)

Fig. 8 Two different evolutions of semimajor axis ratio a2/a1 for a system which starts in a 3–2 mean motion
resonance, where the planetary masses m1 = m2 = m are kept constant. In panel a m = 0.995 mcrit and the
system shows long-time stable quasi-periodic evolution; in panel b, m = mcrit and the system immediately
proves unstable (note that the timescales reported on the horizontal axes differ by 6 orders of magnitude). a
m = 0.995 mcrit , b m = mcrit

Simulations with higher planetary masses go unstable immediately, after � 125 revolutions
of the inner planet. This is shown in Fig. 8.

We test two possible origins of the instability of the system. The first one is that of a low-
order secondary resonance between the frequency of libration of the resonant angles and that
of the synodic angle λ1 −λ2, which has the most noticeable effect on the faster, short-period
dynamics of the system (cfr. Figs. 4a, 5a). Note that as the planetary mass increases the
frequency ωλ1−λ2 of λ1 − λ2 does not change considerably, as it is fixed by the resonance
index k, the location of the planetary system and stellar mass; only the amplitude of this
frequency grows with m. This is visible already in Fig. 7 and shown again in Fig. 9. Instead,
the frequency of libration around the equilibrium point increases with m, so that for high
enough planetary masses it can reach a l − (l − 1) resonance with ωλ1−λ2 , where l ≥ 2 is an
integer, and this might destabilize the system. To check this first hypothesis we build a map of
the libration frequencies as a function of the planetarymass and the eccentricity. To do this, we
first fix a planetary mass m and obtain equilibrium points for different values of the constant
of motion �, as detailed in Sect. 2.2, and for each point we calculate the frequencies of
libration ω1,ω2 as explained in Sect. 2.3; finally, we change the value ofm. When we do this,
the value ofK is adjusted in order to keep fixed the location of the exact Keplerian resonance.
For, e.g., the 3–2 mean motion resonance, for each fixed value of m, each equilibrium point
is univocally characterized by the value of e2, so we can write ωi (m, e2), i = 1, 2. We then
compare it with the frequency ωλ1−λ2 of the synodic angle λ1 − λ2. We show in Fig. 9 a
contour plot of ω1 and ω2 as the background of the aforementioned numerical simulations.
Sinceω1 > ω2, as we saw in Sect. 2.3, we can focus on secondary resonances betweenω1 and
ωλ1−λ2 . We notice that some systems become unstable before the frequency ω1 reaches the
2–1 resonance with ωλ1−λ2 , while others pass through this low-order secondary resonance
unaffected. We therefore conclude that these secondary resonances do not play a role in the
dynamics of the system, at least at small libration amplitudes.

The second hypothesis for the onset of instability is inspired by the criterion of minimal
distance between the planets, first proposed by Gladman (1993), then revised (see, e.g.,
Obertas et al. 2017). These studies show that two non-resonant planets go unstable when
their orbital configuration is such that they come closer to each other than a critical distance

dcrit = 2
√
3rH, (4.3)
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(a)

(b)

Fig. 9 We show contour plots for the frequencies ω1, panel a and ω2, panel b, as functions of the planetary
mass m and the eccentricity e2 in the case of the 3–2 mean motion resonance. Lighter colors indicate a higher
value of the frequencies. The black lines indicate, respectively, a 2–1, 3–2, 4–3 and 1–1 resonance with the
fast synodic frequency ωλ1−λ2 , see the legend. As expected, the frequency ω2 is smaller than ω1, except
for extremely small values of e; we can therefore concentrate on ω1, panel a, when looking for secondary
resonances in the system. The dots represent the result of the numerical simulations carried out as explained
in the text. The simulations are interrupted when the system becomes unstable. Note that the red and yellow
simulations go unstable even before encountering the first resonance with ωλ1−λ2 (green line). Instead, the
green and blue simulations cross it undisturbed and do not go unstable near any particular resonance
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(a)

(b)

Fig. 10 Contour plots of d/dcrit , where d is the minimal distance between the planets on their orbits around
the star, and dcrit is the critical distance defined in (4.3) in terms of the mutual Hill radius. In both panels,
lighter colors indicate higher values of d/dcrit , and the dashed black line indicates the level d/dcrit = 1. In
panel a we superimpose the same numerical simulations as in Fig. 9. We show that the systems cross this
line undisturbed and reach configurations where d/dcrit < 1. We note, however, that the instability occurs
roughly at the same level, indicated by a solid black line, and corresponding to d/dcrit � 0.78. In panel b, se
choose two simulations, but we also use initial conditions where we have excited the amplitude of libration
of the resonant angles. In both cases, the yellow dots indicate the unexcited case, and the red and green dots
show increasing excitation of the libration. We see that with higher degrees of excitation the instabilities occur
closer and closer to the usual condition d = dcrit . As the area enclosed by the libration around the equilibrium
is an adiabatic constant with respect to the slowly changing parameterm, as soon as the stable region becomes
too small when increasing the planetary mass the system exits the resonance. a Small libration amplitude, b
different libration amplitudes

where

rH =
(
m1 + m2

3M∗

)1/3 a1 + a2
2

(4.4)
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is the mutual Hill radius. Note that for non-resonant configurations, the closest distance
of approach between the two planets coincides with the orbital distance, but for resonant
ones this is not the case. Therefore, in this case we consider applying Gladman’s criterion
not to the orbital distance, but to the actual closest approach of the two planets during the
evolution in the resonant configuration. We can estimate this closest distance analytically as
follows. As before we find for a fixed planetary mass and a fixed value of � an equilibrium
point, which can again be identified in terms of the eccentricity. We then evaluate the real
minimal distance d of the two planets in such orbital configuration, by sampling the distance
between the planets at different values of λ1 in [0, 2kπ] (recall that the full Hamiltonian is
periodic in this angle with period 2kπ ), and taking the minimum of these distances. We thus
plot in the background of Fig. 10 the value d/dcrit in the case of the 3–2 resonance, as a
function again of m and e2, where dcrit is given by (4.3). In Fig. 10a we superimpose the
same numerical simulations as in Fig. 9. We observe that the planetary systems reach the
critical distance dcrit (black dashed line) without displaying any instability. Therefore, we see
that resonant are more stable against close encounters than systems with randomly chosen
angular parameters. It is well known that given values of a1, e1, a2, e2 a pair of resonant
planets has a minimum approach distance which is larger than if the planets are not in
resonance. Here we show, in our knowledge for the first time, that the center of a resonance is
more stable given an actual minimum approach distance (not an orbital distance), than a non-
resonant configuration. In fact, we notice that the instability occurs when the planets reach an
analytically estimated closest distance d such that d/dcrit � 0.78, see the black continuous
line. We should note, however, that as the planetary masses increase and the planets reach
d/dcrit ∼ 1, one is approaching a singularity (a collision) so that the remainder of the averaged
Hamiltonian grows (e.g., Pousse et al. 2017), meaning that the closest approach calculated
along the trajectories of the averagedmodel might be incorrect. However, we checked against
the actual minimal approach distance that is obtained along a simulation and we saw that
at d/dcrit � 1 the analytically calculated distance is slightly bigger than the real one but
correct within an error of ∼ 3%, and even close to the instability, i.e., for d < dcrit but
m � mcrit , it is again slightly bigger than the real minimal distance but correct within a
∼ 6% error. The actual minimal distance at which planets in a 3–2 mean motion resonance
go unstable is therefore d/dcrit � 0.74; this is slightly smaller than the number obtained
analytically and well smaller than 1. We repeated the analysis for the 4–3 resonance, and we
find that the instability occurs when d/dcrit � 0.6. We also run simulations where we took
systems initially deep in resonance and slightly excited their amplitude of libration of the
resonant angles, as we did in Sect. 2.3. With these systems, we repeat the numerical exercise
of increasing the planetary mass, see the resulting evolutions for two of them in Fig. 10b.
We see that the instabilities occur now closer and closer to the usual criterion, where the
d/dcrit = 1. This indicates that as the mass increases the stable region of stability around the
equilibrium point shrinks. We further test this explanation by taking a system that is deep in
resonance, with low amplitude of libration of the resonant angles, and with a mass that is just
below the critical massmcrit . Recall that such a system was long-time stable. We then perturb
the system to sightly excite the amplitude of libration, as explained before. We see that the
system immediately goes unstable after ∼ 150 revolutions of the inner planet, indicating
that at values of m ∼ mcrit the whole stable region of stability has shrunk to the equilibrium
point itself. This behavior is similar to what is shown in Fig. 8. The sharp transition between
stability and a short instability timescale should not surprise. In a planar model, the closest
approach distance is achieved very soon. This is true for both the stable and the unstable
case. The difference is that in the first case the closest approach distance is large enough
not to destabilize the orbit. The closest encounters can then repeat every few years, but the
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orbit remains stable forever. In the second case, instead, the first closest encounter makes the
semimajor axes of the planets jump out of resonance.

5 Summary

In this work, we investigated the dynamics of resonant planetary system, from the capture in
mean motion resonance via convergent migration in a protoplanetary disk, to the stability of
systems with low-amplitude libration of the resonant angles. We treat the simple case of the
planar three-body problem, with two equally massive planets.

We present the analytical techniques needed to describe the system in Sect. 2. There, we
develop the theory for unexpanded Hamiltonians and find semi-analytically the equilibrium
points; we validate numerically the analytical calculations, showing perfect agreement. We
compare these with equilibrium points resulting from low-order expansions in the eccentrici-
ties, showing that the latter they do not capture qualitatively or quantitatively the simulations.
Since we are interested in the dynamics in the region of the phase space around the equilib-
rium points, we calculate the frequencies of librations in the regime of vanishing amplitude
of libration, and check again the results with numerical simulations.

In Sect. 3 we describe the forces which result from the interactions between the planets
and a disk of gas, which is used in the numerical simulations in order to capture the planets in
first-order mean motion resonance. These interactions include a damping in the eccentricity
and a torque which results in an inward Type I migration. To ensure convergent migration
and resonant trapping, a planetary trap (Masset et al. 2006) is implemented at the edge of
the disk of gas. These dissipative forces are implemented in our code using simple analytical
formulae which simulate the disk–planet interactions of real hydrodynamical simulations
(e.g., Cresswell and Nelson 2006). We present in “Appendix A” an analytical description
of the capture in mean motion resonance following a general approach, and derive formu-
lae to calculate analytically the final equilibrium configuration. We compare our formulae
with similar ones from previous works and validate our results with numerical simulations,
showing perfect agreement.

In Sect. 4 we investigate the stability of resonant systems at low amplitude of libration.
We describe our numerical experiments where we fictitiously increase the planetary mass to
follow the low-amplitude regime until the onset of instability. At the same time, we detail
how one can follow analytically the evolution of the system to a good approximation up
to high value of the planetary masses. We test against two possible reasons for instability.
The first is that of a secondary low-order resonance between the frequency of libration of
a resonant angle (which grows with the planetary mass, while maintaining adiabatically the
same amplitude around the equilibrium point) and the frequency of the fast synodic angle
λ1 − λ2 (which is constant with the planetary mass), where λi is the mean longitude of a
planet.We construct a map of the frequency of libration of the resonant angles as a function of
the planetary mass and the eccentricity and compare the calculated values with the frequency
of the synodic angle. We see that some systems become unstable before reaching the 2–1
resonance between the libration and the synodic frequency, while others cross it unaffected.
We therefore conclude that these secondary resonances do not play a significant role in
the instability of pairs of planets in first-order mean motion resonance at low amplitude
of libration. The second hypothesis is that of instability due to close encounters between
planets, inspired by the mutual Hill radius stability criterion (Gladman 1993). In this case
we build a map of the minimal distance reached by the planets in their orbital configuration
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as a function of the mass and the eccentricity. We see that resonant planetary systems are
more stable than those with randomly chosen orbital parameters, as they can reach a minimal
distance that is smaller then the critical distance dcrit = 2

√
3rH, where rH is the mutual Hill

radius, which is the usual critical distance belowwhich two planets go unstable (cfr. Gladman
1993; Obertas et al. 2017). We find nonetheless that there is a critical distance after which
the system goes unstable, which is a fraction of the usual dcrit . We see that for systems with
bigger amplitude of libration of the resonant angles this critical distance approaches more
and more the usual dcrit . This indicates that the region of stability around the equilibrium
point shrinks as the mass increases, until the point itself becomes unstable and the system
exits the resonance.
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A: Disk–planets interactions and evolution inmeanmotion resonance

The value of the equilibrium eccentricity (and hence the semimajor axes ratio a2/a1) for two
planets embedded in a protoplanetary disk in the phase of resonant orbital configuration has
been computed in a number of works (e.g., Papaloizou and Szuszkiewicz 2005; Crida et al.
2008; Goldreich and Schlichting 2014). We propose here a different formulation, consistent
with the Hamiltonian resonant description provided in Sect. 2 and the adiabatic principle.

For simplicity, we first discuss the case in which the gas only interacts with the outer
planet, and finally, we add the condition that there is a planetary trap at the disk edge so that
the inner planet stops migrating. The first assumption does not lead to any loss in generality,
as the main idea will be to work in rescaled variables, putting R = a2/a1, and following
the evolution of this quantity rather than each semimajor axis. We will then compare the
analytic results with the equilibrium values obtained in numerical simulations. To simplify
the calculation we choose here units in which m

√G(M∗ + m) = 1. We also assume small e
to simplify the formulae, but the method is indeed general.

The idea is to start with two fundamental equations. The first states that the derivative of
the angular momentum of the system is equal to the torque:

dL
dt

= L̇ = T ; (A.1)

the second states that the derivative of the energy of the system is equal to the work

dE

dt
= Ė = W . (A.2)

The total torque exerted on the planetary system from the gas is, from equation (3.5)

T = L̇mig,2 = − L2

τmig,2
= −

√
a2(1 − e22)

τmig,2
. (A.3)

Using (3.8), the change in orbital energy is

Ėi = ȧi
2a2i

= 1

ai

ȧi
2ai

= 1

ai

(

− 1

τmig,i
− p

2

e2i
τe,i

)

, (A.4)
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where p � 2 for small e so that we find that the total work is

W = 1

a2

(

− 1

τmig,2
− e22

τe,2

)

. (A.5)

We now pass in rescaled variables, and write R = a2/a1. Using the expression (A.5) for the
work, (A.4) for Ėi and multiplying both sides by a2, Eq. (A.2) reads

R
ȧ1
2a1

+ ȧ2
2a2

= − 1

τmig,2
− e22

τe,2
; (A.6)

using now
ȧ2
a2

= Ṙ

R
+ ȧ1

a1
, (A.7)

this becomes
ȧ1
a1

=
[

− 2

τmig,2
− 2e22

τe,2
− Ṙ

R

]
/
(R + 1). (A.8)

Similarly, to rewrite Eq. (A.1) we write

L = √
a1

[√
1 − e21 + √

R
√
1 − e22

]
; (A.9)

then, ignoring in (3.7) the higher-order terms in e in and writing for each planet L̇i �
ȧi

2
√
ai

√
1 − e2i − √

ai ei ėi , we use (A.3) to obtain

L̇ � ȧ1
2
√
a1

[√
1 − e21 + √

R
√
1 − e22

]
+ √

a1

[
−e1ė1 + Ṙ

2
√
R

√
1 − e22 − √

Re2ė2

]

= −
√
a2(1 − e22)

τmig,2
. (A.10)

Dividing this equation by
√
a1 and using (A.8), we get

[

− 1

τmig,2
− e22

τe,2
− Ṙ

2R

][√
1 − e21 + √

R
√
1 − e22

]/
(R + 1)

+
[
−e1ė1 + Ṙ

2
√
R

√
1 − e22 − √

Re2ė2

]
= −

√
R
√
1 − e22

τmig,2
. (A.11)

We now write ei = ei (R) as given by the equilibrium curves shown in Fig. 2, so that we
can write an equation with R as the sole independent variable. Using then ėi = dei

dR Ṙ and
grouping the terms in Ṙ, we get

⎡

⎣−
(√

1 − e21 + √
R
√
1 − e22

) /
(2R(R + 1)) − e1

de1
dR

+
√
1 − e22

2
√
R

− √
Re2

de2
dR

⎤

⎦ Ṙ

=
[

1

τmig,2
+ e22

τe,2

] [√
1 − e21 + √

R
√
1 − e22

] /
(R + 1) −

√
R
√
1 − e22

τmig,2
;

(A.12)
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approximating each 1 − e2 � 1 for small e’s one can simplify this equation into
[

1

2
√
R

− e1
de1
dR

− √
Re2

de2
dR

− 1 + √
R

2R(1 + R)

]

Ṙ = (1 − R3/2)

τmig,2(1 + R)
+ e22(1 + √

R)

τe,2(1 + R)
.

(A.13)
Such an equation gives the derivative of R as a function of R, whereas equation (A.8) gives
the evolution of a1 as a function of R. The evolution of e1 and e2 is obtained from that of R
using the functions e1(R) and e2(R). Together these relationships describe the full evolution
of the resonant system as it evolves under the torque and the damping caused by the disk. If
there is no damping (τe,2 = ∞) then no equilibrium is possible and R continues to decrease,
the right-hand side being negative, and the eccentricities keep following the curves in Fig. 2.
If instead τe,2 �= ∞, the equilibrium point occurs when Ṙ = 0, that is, putting the right-hand
side of, e.g., the simplified equation (A.13) equal to 0, when

e22 = (R3/2 − 1)

(1 + R1/2)

τe,2

τmig,2
= (R3/2 − 1)

2(1 + R1/2)
K−1
2 , (A.14)

where K2 = τa,2
τe,2

is the K -factor of the outer planet. The multiplicative factor multiplying

K−1
2 can be further approximated by taking R = R̄ = (k/(k − 1))2/3.
In the case of a trap at the disk edge operating on the inner planet to stop the migration

process, the requirement is that the torque on the inner planet adapts so that the total torque
on the system is 0, whatever may be the additional effect of the disk on the inner planet. In
this case, the first fundamental equation (A.1) rewrites

dL
dt

= L̇ = 0 i.e., L̇1 = −L̇2. (A.15)

This implies that the disk exerts a positive torque on the inner planet

L̇1 = + L̇1

τmig,1
(A.16)

with 1/τmig,1 � √
R/τmig,2 (still approximating 1 − e2 ∼ 1). The total work on the system

is instead not 0. Using the torque just computed for the inner planet and (3.8), it is easy to
see that the work exerted by the disk on the inner planet is

W1 = 1

a2

[

+ R3/2

τmig,2
− Re21

τe,1

]

, (A.17)

where we also consider the eccentricity damping on the inner planet (on a timescale not
necessarily equal to that of the second planet).2 This allows to rewrite Eq. (A.6) as

R
ȧ1
2a21

+ ȧ2
2a22

=
[

R3/2

τmig,2
− R

e21
τe,1

]

+
[

−1

τmig,2
− e22

τe,2

]

, (A.18)

and, using (A.7), the equivalent of (A.8) becomes:

ȧ1
a1

=
[

− Ṙ

R
+ 2(R3/2 − 1)

τmig,2
− 2Re21

τe,1
− 2e22

τe,2

]
/
(R + 1). (A.19)

2 We stressed the plus sign in the first term in the right-hand side of W1, in contrast with the negative sign of
the corresponding term in W2, since the effect of the trap on the inner planet is that of outwards migration.
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Then, redoing all the calculations as above from (A.10) to (A.13), but putting equal to 0 the
right-hand side of (A.10) (zero total torque) and using (A.19) instead of (A.8), the equivalent
of Eq. (A.14) becomes

(R3/2 − 1)

τmig,2
− Re21

τe,1
− e22

τe,2
= 0. (A.20)

Notice that if this equation is satisfied, ȧ1 in (A.19) vanishes when Ṙ = 0, i.e., the system
is at a complete equilibrium, unlike in the previous case where both planets were migrating
in resonance, at constant R. Indeed, the equilibrium equation could also have been found
by imposing directly ȧ1 = 0 and Ṙ = 0 in (A.19). Considering another limiting case as an
example, if no damping is applied to planet 1, τe,1 = ∞, then the equilibrium in e2 is

e22 = (R3/2 − 1)
τe,2

τmig,2
= (R3/2 − 1)

2
K−1
2 ; (A.21)

e.g., for the 3–2 resonance the multiplicative coefficient, estimated again using R = R̄, is
about twice of the one in (A.14), meaning that the higher relative push between the two
planets against one another, provided by the trap, has the effect of increasing the equilibrium
eccentricity.

Analytical formulae to calculate the equilibrium eccentricity during the capture in reso-
nance and valid in the low-eccentricity regime have already been produced. For example,
Ramos et al. (2017) reproduce a formulawhich they derive fromPapaloizou andSzuszkiewicz
(2005): taking these formulae in the limiting case of τe,1 = ∞ and τa,1 = ∞, one obtains
our formula (A.14). Another point of view was adopted in Crida et al. (2008), where the
authors obtained the damping time τe,1 needed to reach a given value of eccentricities at the
equilibrium configuration. Their final formula (16) indeed leads to our formula (A.20) by
using Eq. (A.16) and by again replacing 1 − e2 with 1, their η by

√
R and their ε by 1/R

(note that their −1/τa is defined as ȧ/a, while in the present work the latter is expressed by
−1/τa − 2e2/τe). Goldreich and Schlichting (2014) derived a formula for the equilibrium
eccentricity in the simplified case of the planar, circular, restricted three-body problem with
a massless inner planet and using equations to first order in e1. They found that

e1,eq =
√

τe,1

k τmig,eff
, (A.22)

where τ−1
mig,e f f = τ−1

mig,2 − τ−1
mig,1.

We now look at numerical simulations to confirm these analytical predictions. For formula
(A.14), we consider the case of β = 0, β being the flaring index of the disk. This is because,
even when the equilibrium described by (A.14) is reached, Ṙ = 0 but the two planets keep
migrating due to the torque on the outer one; now since h(r) = zscalerβ and the K -factor
depends on h via (3.9), it is convenient to keep h a constant so that the equilibrium eccentricity
attained by the system does not evolve as r = a2 does. In this case, K2 � 82.11. We estimate
with (A.14) the equilibriumeccentricity eeq,2 � 0.0311 for the 4–3 resonance, eeq,2 � 0.0377
for the 3–2 resonance, and eeq,2 � 0.0519 for the 2–1 resonance. We show in Fig. 11 the
result of numerical simulations with the described setup, showing good agreement with the
predicted values. We note that the equilibrium found is always stable, because τe,1 = ∞
(Lee and Peale 2002; Deck and Batygin 2015).

For formula (A.20), we can again consider a flared disk, β = 0.25. To solve that equation,
we first need to write e1 = e1(e2) from the equilibrium curves in Fig. 2 for the different
resonances, and then to calculate from (3.2) and (3.6) the values for τe,1, τa,2 and τe,2. Note
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(b)(a)

(c)

Fig. 11 Confirmation of formula (A.14) for the equilibrium value of e2 where K2 = τa,2
τe,2

� 82.11 ≡ const (in

the case of a disk with flaring index β = 0), in the case of various first-order meanmotion resonances.We show
as a function of the semimajor axes ratio a2/a1 = R the evolution of e2 in the numerical simulations under
the conditions explained in the text. The red dot indicates the configuration of the system after the equilibrium
is attained. We indicate with an horizontal line the predicted value for e2,eq, showing good agreement. Note
that in the 2–1 mean motion resonance case, we see the same behavior as shown in Fig. 1a, associated with
the smooth change of δγeq from π to 0 as described in Sect. 2.2; the goodness of the prediction of e2,eq is
unaffected. a 4–3 mean motion resonance, b 3–2 mean motion resonance, c 2–1 mean motion resonance

that we don’t need to calculate the value of each τwave,1 and τwave,2 at the positions a1, a2 of
the planets, sincewe can just factor out one of the semimajor axes and easily reduce this factor
to a quantity depending only on R, which we again approximate with R̄. However, since the
disk is flared, to obtain τmig,2 we need to calculate the value of h = h(a2) at the position
of the outer planet, and we again write a2 as a function of e2. We thereby estimate with
(A.20) a value e2,eq � 0.0114 for the 4–3 resonance, e2,eq � 0.0134 for the 3–2 resonance
and e2,eq � 0.0040 for the 2–1 resonance. We show in Fig. 12 the result of numerical
simulations with this setup, showing again good agreement with the analytical predictions.
To use formula (A.22) from Goldreich and Schlichting (2014), we put |τmig,1| = τmig,2/

√
R

(cfr. Eq. (A.16)).We obtain in the cases discussed above e1,eq � 0.019 for the 4–3 resonance,
e1,eq � 0.022 for the 3–2 resonance and e1,eq � 0.024 for the 2–1 resonance, the real values
obtained from the numerical simulations being, respectively, e1,eq � 0.011, e1,eq � 0.012
and e1,eq � 0.018. This shows that using such an approximated formula one obtains the right
order of magnitude but the accuracy may be off by a factor of 2.

We note that for the 2–1 resonance (Fig. 12c), the case with m1 = m2 = 10−5M∗ and
K ∼ 100 should lead to an instability of the equilibrium point (see Fig. 3 of Deck andBatygin
2015). We have checked that this is indeed the case. However, the growth of the libration
amplitudes manifests itself on a timescale τe (see Eq. (29) in Goldreich and Schlichting
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(a) (b)

(c)

Fig. 12 Confirmation of formula (A.20) for the equilibrium value of e2 in the case of a disk with flaring index
β = 0.25, for various first-order mean motion resonances. We show as a function of the semimajor axes ratio
a2/a1 = R the evolution of e2 in the numerical simulations under the conditions explained in the text. The red
dot indicates the configuration of the system after the equilibrium is attained. We indicate with an horizontal
line the predicted value for e2,eq, showing good agreement. a 4–3meanmotion resonance, b 3–2mean motion
resonance, c 2–1 mean motion resonance

Fig. 13 Evolution of e2 during the capture in the 3–2 resonance for different planetary massesm1 = m2 = m.
The vertical black line indicates the calculated value of e2,eq obtained with (A.14). The red dots represent
the final configurations of the systems after the equilibria are reached, showing that the resulting equilibrium
value of e2 is independent of m, as predicted by the analytical formulae

2014), which is very long given the low surface density of the disk that we assume to ensure
a slow evolution. We stop the simulation before that the instability produces any noticeable
effect. This is appropriate for the purposes of our study, which is to place planets deep in
resonance to study their stability as a function of planetary mass in absence of dissipation
(see Sect. 4).

Weconclude this “Appendix” bynoticing that in bothEqs. (A.14) and (A.20) the coefficient
in τwave which depends on the planetarymassm and of the gas surface density� is eliminable
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(formula (A.20) in principle depends on the planet mass-ratio, here fixed to 1), meaning
that the final configuration does not depend on these quantities. This is confirmed by our
simulations, as shown in Fig. 13. The fact that the final configuration does not depend on the
disk surface density means also that we can, for the purposes of our study here, let� be small
so to ensure a slow enough change in angular momentum and invoke the adiabatic approach
mentioned at the beginning of Sect. 2.2, without affecting the final resonant configuration
reached by the system.
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