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Preamble

“Essentially, all models are wrong but some are useful”

George E.P. Box



Introduction



Introduction

Statistical learning is nowadays an unavoidable field:

• it aims to model a phenomenon and predict its future behavior,

• classification is one of the most active topic in this field.

A big challenge is to learn from modern data which are:

• high-dimensional (p large),

• big or as stream (n large),

• evolutive (evolving phenomenon),

• heterogeneous (categorical, functional, networks, ...)

The understanding of the results is essential:

• in many applications, practitioners are very interested in visualizing the processed data,

• and to understand what are the relevant original variables for interpretation.



The Maasai research team (team.inria.fr/maasai/)

A research team in “core AI”, created in 2020:

• 6 permanent researchers, 25 Ph.D. students and postdocs, and 4 engineers,

• located at the Centre Inria of Université Côte d’Azur, in Sophia-Antipolis,

The team focuses on the Models and Algo-

rithms of Artificial Intelligence:
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The challenges of high-dimensional data

Among the AI challenges, learning with HD data is still only partially solved:

• we have to deal with the “curse of dimensionality”,

• high-dimensional spaces are quite “special”!

• the “ultra-high dimensional” case (n < p) is even more difficult.

Functional data / time series is a special case:

• they can be seen as infinite dimensional data,

• such data are more and more present (smart sensors, high frequency recordings, ...)



A motivating example: mass spectrometry

Mass spectrometry:

• it is a recent analytical technique that measures the mass-to-charge ratio of charged

particles and which aims is to identify the elemental composition of a sample,

• It exist two types of mass spectrometry data:

• multi-array data which aims to analyze serums or tissue fragments

• MALDI images which are 2D or 3D MS images of tissues or organs



A motivating example: mass spectrometry

Classification is useful in this context:

• it is used in Medicine for disease diagnostic from blood samples:

• a supervised classifier is learned from blood samples of healthy and sick patients,

• the classifier is then used to classify new blood samples.

• a combination of supervised and unsupervised classification can be used to detect errors in

the labels
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Figure: Control and cancer (colorectal) mass spectrometry spectra.



A motivating example: hyperspectral imaging

Hyperspectral imaging:

• it is an imaging technique which collects information from across the electromagnetic

spectrum,

• as a consequence, the result is an image where each pixel is a high-dimensional spectrum,

• among the application fields, we can cite: agriculture, mineralogy, environment, security,

astronomy.
Image

Figure: Image of the studied zone (south pole) of planet Mars.



A motivating example: hyperspectral imaging

The data from IPAG:

• a 300× 128 hyperspectral image of the south pole of Mars,

• each “pixel” is described by a 256-dimensional spectrum.

Figure: A few spectra of the studied zone.

Classification is useful in this context:

• for the segmentation of the studied zones -> ground nature classification,

• for selecting the discriminative spectral bands which allows the ground nature

determination.



Problems and challenges in

classification & clustering



The classification problem

Classification is a two-headed problem:

• unsupervised classification which is also known as clustering,

• supervised classification which is also known as discriminant analysis.

The clustering problem consists in:

• organizing a set of n observations y1, ..., yn ∈ Y into K classes,

• i.e. associating the labels z1, ..., zn ∈ {1, ...,K} to the data.
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The classification problem

The discriminant analysis problem aims to:

• on the basis of a complete set {(y1, z1), ..., (y1, z1)} ∈ Y × {1, ...,K}, learn a classifier δ,

• which can predict the class z of a new observation y :

δ : Y → {1, ...,K},
y → z .
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• The optimal rule δ∗ is the one which assigns x to the class with the highest posterior

probability (called the MAP rule):

δ∗(x) = argmaxk=1,...,KP(Z = k|X = x).



The mixture model

The mixture model:

• the observations x1, ..., xn are assumed to be independent realizations of a random vector

X ∈ X p with a density:

f (x) =
K∑

k=1

πk f (x , θk),

• K is the number of classes,

• πk are the mixture proportions,

• f (x , θk) is a probability density with its parameters θk .

The Gaussian mixture model:

• among all mixture models, the Gaussian mixture model is certainly the most used in the

classification context,

• in this case, f (x , θk) is the Gaussian density N (µk ,Σk) with θk = {µk ,Σk}.



The mixture model

The MAP decision rule becomes in the mixture model framework:

δ∗(x) =k=1,...,K P(Z = k |X = x),

=k=1,...,K P(Z = k)P(X = x |Z = k),

=k=1,...,K Hk(x),

where Hk is defined by Hk(x) = −2 log(πk f (x , θk)).

The building of the decision rule consists in:

1. estimate the parameters θk of the mixture model,

2. calculate the value of Hk(x) for each new observation x .



Gaussian mixtures for classification

Gaussian model Full-GMM (QDA in discrimination):

Hk(x) = (x − µk)tΣ−1
k (x − µk) + log(det Σk)− 2 log(πk) + C st .

Gaussian model Com-GMM which assumes that ∀k , Σk = Σ (LDA in discrimination):

Hk(x) = µt
kΣ−1µk − 2µt

kΣ−1x − 2 log(πk) + C st .
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Fig. Decision boundaries for Full-GMM (left) and Com-GMM (right).



The curse of dimensionality

The curse of dimensionality:

• this term was first used by R. Bellman in the introduction of his book “Dynamic

programming” in 1957:

All [problems due to high dimension] may be subsumed under the heading “the curse of

dimensionality”. Since this is a curse, [...], there is no need to feel discouraged about the

possibility of obtaining significant results despite it.

• he used this term to talk about the difficulties to find an optimum in a high-dimensional

space using an exhaustive search,

• in order to promotate dynamic approaches in programming.



The curse of dimensionality

In the mixture model context:

• the building of the data partition mainly depends on:

Hk(x) = −2 log(πk f (x , θk)),

• model Full-GMM:

Hk(x) = (x − µk)tΣ−1
k (x − µk) + log(det Σk)− 2 log(πk) + γ.

Consequently:

• it is necessary to invert Σk which have a number of parameters proportional to p2,

• if n is small compared to p2, the estimates of Σk are ill-conditionned or singular and it will

be difficult or impossible to invert Σk .



The curse of dimensionality

From the estimation point of view:

• let us consider the normalized trace τ(Σ) = tr(Σ−1)/p of the inverse covariance matrix

Σ−1 of a multivariate Gaussian distribution N (0,Σ),

• the estimation of τ from a sample of n observations {x1, ..., xn} conduces to:

ˆτ(Σ) = τ(Σ̂) =
1

p
tr(Σ̂−1),

E [ ˆτ(Σ)] =

(
1− p

n − 1

)−1

τ(Σ).

• consequently, if the ratio p/n→ 0 when n→ +∞, then E [ ˆτ(Σ)]→ τ(Σ),

• however, if the dimension p is comparable with n, then E [ ˆτ(Σ)]→ cτ(Σ) when n→ +∞,

where c = limn→+∞ p/n.



The blessings of dimensionality

As Bellman thought:

• all is not bad in high-dimensional spaces (hopefully!)

• there are interesting things which happen in high-dimensional spaces.

First example: volume of the unit sphere is V (p) = πp/2

Γ(p/2+1) ,
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Fig. Volume of a sphere of radius 1 regarding to the dimension p.
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The blessings of dimensionality

Second example: probability that a uniform variable on the unit sphere belongs to the shell

between the spheres of radius 0.9 and 1 is

P(X ∈ S0.9(p)) = 1− 0.9p −→
p→∞
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The blessings of dimensionality

Third example:

• since high-dimensional spaces are almost empty,

• it should be easier to separate groups in high-dimensional space with an adapted classifier.
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Classical ways to avoid the curse of dimensionality

Dimension reduction:

• the problem comes from that p is too large,

• therefore, reduce the data dimension to d � p,

• such that the curse of dimensionality vanishes!

Regularization:

• the problem comes from that parameter estimates are unstable,

• therefore, regularize these estimates,

• such that the parameter are correctly estimated!

Parsimonious models:

• the problem comes from that the number of parameters to estimate is too large,

• therefore, make restrictive assumptions on the model,

• such that the number of parameters to estimate becomes more “decent”!



Recent approaches for clustering

In the past decade, several innovative approaches were proposed:

• subspace clustering:

• several key works: Tipping & Bishop (Mixt. PPCA), McLachlan et al. (MFA), Bouveyron et

al. (HDDC), McNicholas & Murphy (PGMM), Beak et al. (MCFA), ...

• clustering in low-dimensional subspaces has shown a high efficiency but their result are

difficult to interpret,

• variable selection for clustering:

• Dean & Raftery and Maugis et al. proposed a Bayesian framework to iteratively select the

relevant variables for model-based clustering,

• these approaches successfully identify the relevant variables for the clustering but are

time-consuming.

• sparsity:

• Pan & Shen and Galimberti et al. proposed `1-penalized maximum likelihood approaches to

select the relevant variables,

• Witten & Tibshirani recently proposed a `1-penalized approach for k-means and hierarchical

clustering,

• these methods are also very efficient but time-consuming and difficult to parametrize.
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Subspace clustering: HDDC



Objectives of subspace clustering

Our objectives:

• clustering efficiency: the methodology should match the performance standard of classical

clustering techniques from both the clustering and the computing points of view,

• modeling: the methodology should provide a probabilistic modeling of each group and

should be able to automatically choose the number of groups,

• visualization: the methodology should provide a comprehensive low-dimensional

representation of the clustered data,

Our proposal:

• a subspace clustering method which models and clusters the data in low-dimensional

subspaces.
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The model [akjbkQkdk ]

Bouveyron & Girard (2007) proposed to consider the Gaussian mixture model:

f (x) =
K∑

k=1

πk f (x , θk),

where θk = {µk ,Σk} for each k = 1, ...,K .

Based on the spectral decomposition of Σk , we can write:

Σk = Qk ∆k Q
t
k ,

where:

• Qk is an orthogonal matrix containing the eigenvectors of Σk ,

• ∆k is diagonal matrix containing the eigenvalues of Σk .



The model [akjbkQkdk ]

We assume that ∆k has the following form:

∆k =



ak1 0
. . .

0 akdk

0

0

bk 0
. . .

. . .

0 bk



 dk

 (p − dk)

where:

• akj ≥ bk , for j = 1, ..., dk and k = 1, ...,K ,

• and dk < p, for k = 1, ...,K .



The model [akjbkQkdk ]
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Fig. The subspace Ek and its supplementary E⊥
k .

We also define:

• the affine space Ek generated by eigenvectors associated to the eigenvalues akj and such

that µk ∈ Ek ,

• the affine space E⊥k such that Ek ⊕ E⊥k = Rp and µk ∈ E⊥k ,

• the projectors Pk and P⊥k respectively on Ek and E⊥k .



The model [akjbkQkdk ] and its submodels

We thus obtain a re-parameterization of the Gaussian model:

• which depends on akj , bk , Qk and dk ,

• the model complexity is controlled by the subspace dimensions.

We obtain increasingly regularized models:

• by fixing some parameters to be common within or between the classes,

• from the most complex model to the simplest model.

Our family of GMM contains 28 models and can be splitted into three branches:

• 14 models with free orientations,

• 12 models with common orientations,

• 2 models with common covariance matrices.



The model [akjbkQkdk ] and its submodels

Model
Nb of prms, K = 4

d = 10, p = 100
Classifier type

[akjbkQkdk ] 4231 Quadratic

[akjbkQdk ] 1396 Quadratic

[ajbQd ] 1360 Linear

Full-GMM 20603 Quadratic

Com-GMM 5453 Linear

Table. Properties of the sub-models of [akjbkQkdk ]



Construction of the classifiers

In the supervised context:

• the classifier has been named HDDA,

• the estimation of parameters is direct since we have complete data,

• parameters are estimated by maximum likelihood.

In the unsupervised context:

• the classifier has been named HDDC,

• the estimation of parameters is not direct since we do not have complete data,

• parameters are estimated through a EM algorithm which iteratively maximizes the

likelihood.



HDDC: the E step

In the case of the model [akbkQkdk ] :

Hk (x) =
1

ak
‖µk − Pk (x)‖2 +

1

bk
‖x − Pk (x)‖2 + dk log(ak ) + (p − dk ) log(bk )− 2 log(πk ).

Fig. The subspaces Ek and E⊥k of the kth mixture composant.



HDDC: the M step

The ML estimators for the model [akjbkQkdk ] are closed forms:

• Subspace Ek : the dk first columns of Qk are estimated by the eigenvectors associated to

the dk largest eigenvalues λkj of the empirical covariance matrix Sk of the kth class.

• Estimator of akj : the parameters akj are estimated by the dk largest eigenvalues λkj of Sk .

• Estimator of bk : the parameter of bk is estimated by:

b̂k =
1

(p − dk)

(Sk)−
dk∑
j=1

λkj

 .



HDDC: hyper-parameter estimation
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Fig. The scree-test of Cattell based on the eigenvalue scree.

Estimation of the intrinsic dimensions dk :

• we use the scree-test of Cattell [Catt66],

• it allows to estimate the K parameters dk in a common way.

Estimation of the nomber of groups K :

• in the supervised context, K is known,

• in the unsupervised context, K is chosen using BIC.



Numerical considerations

• Numerical stability : the decision rule of HDDC does not depend on the eigenvectors

associated with the smallest eigenvalues of Wk .

• Reduction of computing time : there is no need to compute the last eigenvectors of Sk →
reduction of computing time with a designed procedure (×60 for p = 1000).

• Particular case n < p : from a numerical point of view, it is better to compute the

eigenvectors of X̄k X̄
t
k instead of Sk = X̄ t

k X̄k (×500 for n = 13 and p = 1000).



HDDC: an EM-based algorithm

−30 −20 −10 0 10 20

−
3

−
2

−
1

0
1

2

Fig. Projection of the ((Crabs)) data on the first principal axes.

((Crabs)) data:

• 200 observations in a 5-dimensional space (5 morphological features),

• 4 classes: BM, BF, OM and OF.



HDDC: an EM-based algorithm
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Fig. Step n° 1 of HDDC on the ((Crabs)) data.



HDDC: an EM-based algorithm
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Fig. Step n° 2 of HDDC on the ((Crabs)) data.



HDDC: an EM-based algorithm
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Fig. Step n° 3 of HDDC on the ((Crabs)) data.



HDDC: an EM-based algorithm
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Fig. Step n° 4 of HDDC on the ((Crabs)) data.



HDDC: an EM-based algorithm
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Fig. Step n° 5 of HDDC on the ((Crabs)) data.



HDDC: an EM-based algorithm
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Fig. Step n° 10 of HDDC on the ((Crabs)) data.



HDDC: an EM-based algorithm
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Fig. Step n° 15 of HDDC on the ((Crabs)) data.



Discriminative clustering:

Fisher-EM



Objectives of discriminative clustering

Our objectives:

• clustering efficiency: the methodology should match the performance standard of subspace

clustering techniques from both the clustering and the computing points of view,

• modeling: the methodology should provide a probabilistic modeling of each group and

should be able to automatically choose the number of groups,

• visualization: the methodology should provide a unique and comprehensive

low-dimensional representation of the clustered data,

• interpretation: the methodology should allow to select the discriminative variables which

may have specific meanings (biology, economics, ...)

Our proposal:

• a subspace clustering method which models and clusters the data in a common and

discriminative low-dimensional subspace.
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The DLM model... at a glance!

The observed random vector Y ∈ Rp is linked to a latent random vector X ∈ E (supposed to

be the most discriminative) by:

Y = UX + ε,

where U is a p × d orthogonal matrix (UTU = Id) and d < p.

Distribution assumptions, for k = 1, ...,K .:

ε ∼ N (0,Ψ),

X|Z=k ∼ N (µk ,Σk),

The marginal distribution of Y is then:

f (y) =
K∑

k=1

πkφ(y ;mk ,Sk),

where mk = Uµk and Sk = UΣkU
T + Ψk .



The DLM model... at a glance!

We finally assume that the noise covariance matrix Ψk is such that ∆k = W TSkW has the

following form:

∆k =


Σk 0

0

βk 0

. . .

. . .

0 βk



 d ≤ K − 1

 (p − d)

where W = [U,V ].

This model is referred to by DLM[Σkβk ] and 11 submodels can be obtained by constraining

parameters within or between groups.



The DLM model
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Figure 1: Graphi
al summary of the DLM[Σkβk] model
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Figure 2: Graphical summary of the DLM[Σkβ] model



The Fisher-EM algorithm

The inference of mixture models:

• is usually done with the EM algorithm since likelihood maximization in intractable,

• however, we can not make use of the EM algorithm here since the subspace has to be

discriminant.

We therefore proposed the Fisher-EM algorithm for inferring the DLM models:

• a E step which, roughly speaking, determines the current data partition through the

posterior probabilities tik = E [zik = 1|yi ],
• a F step which determines the orientation matrix U according to the current partition of

the data,

• a M step which updates the mixture parameters conditionally to U and tik .



Looking back in the past: Fisher’s criterion

We based our F step on the idea of Fisher’s discriminant analysis (1936):

• knowing a partition of the data, Fisher’s objectives were to find a low-dimensional

subspace such that:

• the groups are well separated → large between-class variance SB

• the groups are homogeneous → small within-class variance SW

• since S = SW + SB , the usual Fisher criterion writes as follows:

max
U

tr
(
(UTSU)−1UTSBU

)
,

• the solution of this optimization problem are the d = K − 1 eigenvectors of the matrix

S−1SB



Looking back in the past: Fisher’s criterion

Figure 3: Discriminative axis vs. principal axis (Fukunaga, 1990)



The F step of the Fisher-EM algorithm

The F step of Fisher-EM:

• determines the orientation matrix U according to the t
(q)
ik by solving the unsupervised

counterpart of Fisher’s criterion: max
U

tr
(

(UTSU)−1UTS
(q)
B U

)
,

wrt uTj ul = 0, ∀j 6= l ∈ {1, . . . , d},
(1)

where:

• S
(q)
B = 1

n

∑K
k=1 n

(q)
k (m̂

(q)
k − ȳ)T (m̂

(q)
k − ȳ),

• n
(q)
k =

∑n
i=1 t

(q)
ik , m̂

(q)
k = 1

n

∑n
i=1 t

(q)
ik yi and ȳ = 1

n

∑n
i=1 yi .

• we proposed a Gramm-Schmidt procedure to solve this constrained optimization problem.



The Fisher-EM algorithm... at work!
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Figure 4: Step 0 of the Fisher-EM algorithm on the Wine data.
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Figure 5: Step 1 of the Fisher-EM algorithm on the Wine data.
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Figure 6: Step 2 of the Fisher-EM algorithm on the Wine data.



The Fisher-EM algorithm... at work!
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Figure 7: Step 3 of the Fisher-EM algorithm on the Wine data.
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Figure 8: Step 5 of the Fisher-EM algorithm on the Wine data.



The Fisher-EM algorithm... at work!

●

● ●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4

−
4

−
2

0
2

U
2

Figure 9: Step 10 of the Fisher-EM algorithm on the Wine data.



The Fisher-EM algorithm... at work!
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Figure 10: Step 20 of the Fisher-EM algorithm on the Wine data.



Experimental results: benchmark
5.7. REAL DATA SET BENCHMARK 122

Method iris wine chiro zoo glass satimage usps358

DLM[Σkβk] 86.8±7.3† 97.8±0.0* 91.2±6.1 80.1±5.7 48.5±2.6 69.6±0.0* 81.1±5.4*†

DLM[Σkβ] 92.6±11 89.3±0.0 98.2±3.4 - 47.9±2.7 64.5±0.0 77.4±9.1

DLM[Σβk] 80.5±3.4 93.8±1.1 94.7±4.2 72.6±5.3 49.4±2.9 65.7±1.3 73.7±7.4

DLM[Σβ] 79.1±2.9 89.8±0.8 85.2±3.2 79.6±5.6 48.6±3.6 65.5±1.6 76.4±9.9

DLM[αkjβk] 87.8±0.5* 97.2±0.0† 85.0±1.4 71.8±6.6† 49.6±2.6† 70.1±0.0 82.3±4.7

DLM[αkjβ] 97.8±0.1 95.2±1.6 98.1±5.2 71.4±8.0 51.1±2.1* 61.7±0.2 73.2±9.5

DLM[αkβk] 92.8±2.1 98.9±0.0 85.5±14*† 71.8±6.9* 48.5±2.2 68.8±0.0 70.9±13.6

DLM[αkβ] 95.8±7.3 97.1±0.9 97.8±5.0 71.0±6.4 49.5±2.4 68.8±0.0 68.3±11.2

DLM[αjβk] 81.6±4.5 91.6±0.5 93.8±4.1 68.5±6.7 49.3±1.8 62.9±0.0† 76.1±11.0

DLM[αjβ] 73.6±6.7 89.8±0.9 89.7±4.1 79.1±4.9 47.4±1.2 67.6±2.8 77.4±10.7

DLM[αβk] 80.1±6.9 91.4±3.2 89.3±1.9 70.1±6.5 48.9±1.3 68.7±1.9 80.5±6.0

DLM[αβ] 66.8±0.0 89.5±1.0 89.2±5.7 80.2±5.3 47.0±1.7 62.1±0.0 69.9±14.2

Full-GMM 79.0±5.7 60.9±7.7 44.8±4.1 - 38.3±2.1 35.9±3.1 -

Com-GMM 57.6±18.3 61.0±14.9 51.9±10.9 59.9±10.3 38.3±3.1 26.1±1.5 38.2±1.1

Mixt-PPCA 89.1±4.2 63.1±7.9 56.3±4.5 50.9±6.5 37.0±2.3 40.6±4.7 53.1±9.6

Diag-GMM 93.5±1.3 94.6±2.8 92.1±4.2 70.9±12.3 39.1±2.4 60.8±5.2 45.9±9.1

Sphe-GMM 89.4±0.4 96.6±0.0 85.9±9.9 69.4±5.4 37.0±2.1 60.2±7.5 78.7±11.2

PCA-EM 66.9±9.9 64.4±5.7 66.1±4.0 61.9±6.2 39.0±1.7 56.2±4.2 67.6±11.2

k-means 88.7±4.0 95.9±4.0 92.9±6.0 68.0±7.4 41.3±2.8 66.6±4.1 74.9±13.9

MCFA (q = 3) 80.6±12.6 92.9±8.2 75.4±7.8 - 47.7±6.9 67.9±8.8 54.2±8.7

PGMM 96.7±0.0 97.1±0.0 97.9±0.0 65.3±0.0 41.6±0.0 58.7±0.0 55.5±0.0

Mclust 96.7 97.1 97.9 65.3 41.6 58.7 55.5

Model name (VEV) (VVI) (EEE) (EII) (VEV) (VVV) (EEE)

Table 5.8: Clustering accuracies and their standard deviations (in percentage) on 3 UCI
datasets (iris, wine and chironomus) averaged on 25 trials. No standard deviation is re-
ported for Mclust since its initialization procedure is deterministic and always provides the
same initial partition. The signs † and ∗ indicates the model selection obtained by BIC and
ICL respectively amongst the 12 DLM models.

Method iris wine chironomus zoo glass satimage usps358

PCA–k-means [48] 88.7 70.2 - 79.2 47.2 - -

LDA–k-means [48] 98.0 82.6 - 84.2 51.0 - -

Dis–k-means [190] - - - - - 65.1 -

DisCluster [190] - - - - - 64.2 -

HMFA [138] - - 98.7 - - - -

Table 5.9: Clustering accuracies (in percentage) on UCI datasets found in the literature (these
results have been obtained with slightly different experimental setups).

Table 1: Clustering accuracies and their standard deviations on 7 UCI datasets.



Application to SDSS galaxy spectra

The Sloan Digital Sky Survey (SDSS) dataset:

• spectra of 702248 galaxies and quasars (with

redshift smaller than 0.25),

• 3 850 dimensions (points in the wavelength range,

λ = 3800 to 9250Å),

• the spacing is uniform in resolution (δλ/λ =

1/4342),

• taking the redshift into account, the range

common to all the spectra goes from 3806 to

7371Å with 2874 wavelengths.

Our objectives:

• experiment modern clustering tools for HD data in

astrophysics,

• have a new look at existing classifications of

galaxies / quasars.
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7371Å with 2874 wavelengths.

Our objectives:

• experiment modern clustering tools for HD data in

astrophysics,

• have a new look at existing classifications of

galaxies / quasars.



Application to SDSS galaxy spectra

Figure 11: The 4-group clustering of the SDSS data.



Application to SDSS galaxy spectra

Figure 12: Comparison of the obtained segmentations with the ones of Kennicutt (1992), Dobos et al.

(2012) and Wang et al. (2018).



Application to SDSS galaxy spectra

Figure 13: The 86 final groups of the sub-clustering of the 4 initial groups.



Discriminative variable selection

by `1 penalization



Discriminative variable selection

Clustering is a data analysis tool and result in-

terpretation is important. Unfortunately, the

loading matrix U is usually difficult to inter-

pret:

variable axis 1 axis 2

sepal length -0.203 -0.062

sepal width -0.324 -0.697

petal length 0.519 0.404

petal width 0.763 -0.588

And we would prefer:

variable axis 1 axis 2

sepal length 0 0

sepal width 0 -1

petal length 0 0

petal width 1 0
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Three ways to introduce sparsity

We chose to introduce sparsity within the F step:

• we want to identify the original variables which best discriminate the groups,

• which amounts to estimate the orientation matrix U with, as much as possible, only 0 or

±1,

• a popular way to do that is to use a `1 penalty (lasso).

We identified three different ways to introduce sparsity:

1. SparseFEM1: classical F step + sparsity step,

2. SparseFEM2: F step as a `1-penalized regression problem,

3. SparseFEM3: sparse SVD on the matrix S−1S
(q)
B .



SparseFEM2: `1-penalized regression problem

Defining the matrices H
(q)
W and H

(q)
B such that H

(q)
W H

(q)t
W = S

(q)
W and H

(q)
B H

(q)t
B = S

(q)
B , we

obtained:

Proposition
The best sparse approximation at the level λ of the solution of (1) is the solution B̂ of the

following penalized regression problem:

min
A,B

K∑
k=1

∥∥∥R(q)−t
W H

(q)
B,k − AB tH

(q)
B,k

∥∥∥2

F
+ ρ

d∑
j=1

βt
j S

(q)
W βj + λ

d∑
j=1

‖βj‖1 ,

such that AtA = Id and where R
(q)
W ∈ Rp×p is such that S

(q)
W = R

(q)t
W R

(q)
W , A = [α1, ..., αd ],

B = [β1, ..., βd ], H
(q)
B,k is the kth column of H

(q)
B and ρ > 0 is a ridge-type regularization

parameter.

Remark : we proposed an iterative procedure based on the LARS algorithm to solve this

problem.



Selection of the sparsity parameter

The selection of the hyper-parameter λ:

• this problem has received very few attention in the unsupervised context,

• a natural way in the model-based clustering context is to use the BIC criterion,

• but, the degree of freedom of the model has to be updated in order to take into account

the sparsity!

[Zou07, Kachour11] have shown:

• that the number of non zero coefficients is a consistent estimator of the degree of freedom

of the model,

• we finally get for the model of SparseFEM:

BICpen(M) = −2 log(L(θ̂))− γe log(n),

where γe = (K − 1) + Kd + (d [p−(d + 1)/2]− de) + Kd(d + 1)/2 + K .
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Comparison with variable selection

iris wine chiro zoo glass satimage usps358
(p=4,K=3) (p=13,K=3) (p=17,K=3) (p=16,K=7) (p=9,K=7) (p=36,K=6) (p=256,K=3)

Approaches (n=150) (n=178) (n=178) (n=101) (n=214) (n=4435) (n=1726)
Fisher-EM 88.3± 1.0 97.8± 0.0 89.5± 13.0 71.8± 6.9 51.1± 2.1 69.6± 0.0 82.3± 4.7
sparseFEM-1 96.5±0.3 97.8±0.2 84.2±11 71.4±8.5 50.2±1.9 69.6±0.1 84.7±3.2

(2.0±0.0) (2.0±0.0) (2.3±0.5) (13±2.5) (6.0±1.0) (36±0.0) (5.5±0.7)
sparseFEM-2 89.9±0.4 98.3±0.0 84.8±12 70.1±12.2 48.4±3.0 67.5±1.6 82.8±9.1

(4.0±0.0) (4.0±0.0) (2.0±0.6) (14±3.6) (6.6±0.7) (36±.0.0) (15.5±16)
sparseFEM-3 96.5±0.3 97.8±0.0 82.9±12 72.0±4.3 48.2±2.7 71.8±2.3 79.1±7.4

(2.0±0.3) (2.0±0.0) (2.0±0.0) (10±2.8) (7.0±0.0) (36±0.0) (6.0±1.3)
sparse-kmeans 90.7 94.9 95.3 79.2 52.3 71.4 74.7

(4.0) (13.0) (17.0) (16.0) (6.0) (36.0) (213)
Clustvarsel 96.0 92.7 71.1 75.2 48.6 58.7 48.3

(3.0) (5.0) (6.0) (3.0) (3.0) (19.0) (6.0)
Selvarclust 96.0 94.4 92.6 92.1 43.0 56.4 36.7

(3.0) (5.0) (8.0) (5.0) (6.0) (22.0) (5.0)

Table 2: Correct classification rates and their standard deviations (in percentage) on 7 UCI datasets (iris, wine, chironomus, zoo,
glass, satimage, usps358) averaged on 20 trials. The average number of nonzero variables is given in brackets. No standard deviation
is reported for Clustvarsel/Selvarclust and sparse-kmeans since their initialization procedure is deterministic and always provides
the same initial partition.

20

Figure 14: Clustering accuracies and their standard deviations on 7 UCI datasets (averaged on 20

trials, models and λ selected by BIC).



A comparative example: the USPS358 dataset

We first considered the USPS358 dataset:

• which contains 1756 handwritten digits (3, 5 and 8),

• and each 16× 16 grayscale image has been transformed as a 256-dimensional vector.

Figure 15: Sample from the USPS358 dataset.

1.3. EXPERIMENTS AND RESULTS 20

(a) (b)

Figure 1.3: Loadings of the projection matrix obtained with the Fisher-EM algorithm + 1 sparsity
step (83.3% of clustering accuracy)

(a) (b)

Figure 1.4: Loadings of the projection matrix obtained with the Sparse Fisher-EM algorithm (83.1%
of clustering accuracy)

Approaches:
Clustering
accuracy

Non-zero
variables

Elapsed
time in sec.

Fisher-EM 82.3± 4.7 256± 0.00 218.8± 1.5

SparseFEM1 82.69± 6.82 5.6± 0.97 967.8± 1.1
SparseFEM2 81.42± 6.77 16.0± 0.00 325.3± 1.0
SparseFEM3 80.62± 8.06 10.1± 4.63 58.3± 2.6

Table 1.1

Approaches:
Clustering
accuracy

Adjusted
Rand Index

Non-zero
variables

naiF 82.69± 6.82 0.567± 0.114 5.6± 0.97
regF 81.42± 6.77 0.540± 0.110 16.0± 0.00
penF 80.62± 8.06 0.532± 0.134 10.1± 4.63

Table 1.2: Means of Clustering accuracies (in percentage) and Adjusted Rand Indexes and their
corresponding standard deviations computed for the 3 sparse procedures (naive (naiF), regression
(regF) and penalized criterion (penF)) on 25 repetitions.

Table 2: Clustering accuracies and computing times for the 3 versions of the sparseFEM algorithm on

the 256-dimensional dataset USPS358 (λ = 0.1).



A comparative example: the USPS358 dataset

Method Computing time Method Computing time

SparseFEM1 967.8±1.1 sec. Sparse k-means 1 783 sec.

SparseFEM2 325.3±1.0 sec. ClustVarSel 4 602 sec.

SparseFEM3 58.3±2.6 sec.

Table 3: Computing time on the USPS358 dataset.

(a) Sparse k-means (b) ClustVarSel (c) SparseFEM2

Figure 16: Variable selection obtained with the 3 sparse algorithms on the USPS358 dataset.



Application to hyper-spectral image analysis

The Mars Express data set:

• hyper-spectral images of the planet Mars taken in 2004,

• we considered the analysis of an image of the south pole of Mars,

• the data are 300×128 pixels described by 256 spectral variables.

We used sparseFEM to analyze this data set:

• the sparsity level λ was fixed to 0.1 to ensure to select a few discriminative variables,

• the whole process took 18 hours on a 2.6 Ghz computer.



Application to hyper-spectral image analysis
Image Segmentation expert Segmentation sparseFEM

Figure 17: Segmentation results: original image (left), expert segmentation (center) and sparseFEM

segmentation (right).
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Figure 18: Selection of the discriminative spectral variables by sparseFEM.



The DFM model for the

clustering of functional data



Transformation of the observed curves

Let us first assume that the observed curves {x1, ..., xn} are independent realizations of a

L2-continuous stochastic process X = {X (t)}t∈[0,T ].

Let us also assume that the stochastic process X admits the following basis expansion:

X (t) =

p∑
j=1

γj(X )ψj(t), (2)

where:

• {ψ1, . . . , ψp} is a basis of functions,

• Γ = (γ1(X ), ..., γp(X )) is a random vector in Rp.



The DFM model

Let F [0,T ] be a latent subspace of L2[0,T ] assumed to be:

• the most discriminative subspace for the K groups,

• spanned by a basis of d basis functions {ϕj}j=1,...,d with d < K < p.

The basis {ϕj}j=1,...,d is obtained from {ψj}j=1,...,p through a linear transformation

ϕj =

p∑
`=1

uj`ψ`,

such that the p × d matrix U = (uj`) is orthogonal.

Let Λ = {λ1, ..., λn} be the basis expansion coefficients of the stochastic process X (t) in the

basis {ϕj}j=1,...,d .



The DFM model

The previous modeling implies that Γ and Λ are linked by:

Γ = UΛ + ε, (3)

where ε ∈ Rp is an independent and random noise term.

Distribution assumptions, for k = 1, ...,K .:

Λ|Z=k ∼ N (µk ,Σk),

ε ∼ N (0,Ξ),

The marginal distribution of Γ is then:

f (γ) =
K∑

k=1

πkφ(y ;mk ,Sk),

where mk = Uµk and Sk = UΣkU
T + Ξ.



The DFM model

We finally assume that the noise covariance matrix Ξ is such that ∆k = W TSkW has the

following form:

∆k =


Σk 0

0

βk 0

. . .

. . .

0 βk



 d ≤ K − 1

 (p − d)

where W = [U,V ].

This model is referred to by DFM[Σkβ] and 11 submodels can be obtained by constraining

parameters within or between groups.



The DFM model

Γ

ΛZ

ε

µk, Σk

U

π

Ξ

Figure 19: Graphical representation of the model DFM[Σkβ].
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FIG. 3. Graphical representation for the model DFM[!kβ].

of the kth group is therefore modeled by !k , whereas the parameter β models the
variance of the noise outside the functional subspace. This model is referred to in
the sequel as DFM[!kβ], and Figure 3 summarizes the modeling.

3.4. A family of discriminative functional model. Starting with the model
DFM[!kβ] and following the strategy of Fraley and Raftery (1999), several sub-
models can be generated by applying constraints on the parameters of the matrix
#k . For instance, it is first possible to relax the constraint that the noise variance
is common across groups. This generates the model DFM[!kβk], which is the more
general model of the family. It is also possible to constrain this new model such
that the covariance matrices !1, . . . ,!K in the latent space are common across
groups. This submodel will be referred to as DFM[!βk]. Similarly, in each group,
!k can be assumed to be diagonal, that is, !k = diag(αk1, . . . ,αkd), and this sub-
model will be referred to as DFM[αkjβk]. The variance within the latent subspace F
can also be assumed to be isotropic for each group, and the associated submodel is
DFM[αkβk]. Following this strategy, 12 different DFM models can be enumerated,
and an overview of them is proposed in Table 2. The table also provides, for each

TABLE 2
Number of free parameters in covariance matrices when d = K − 1 for the DFM models

Model !k βk Nb. of variance parameters

DFM[!kβk] Free Free (K − 1)(p − K/2) + K2(K − 1)/2 + K

DFM[!kβ] Free Common (K − 1)(p − K/2) + K2(K − 1)/2 + 1
DFM[!βk] Common Free (K − 1)(p − K/2) + K(K − 1)/2 + K

DFM[!β] Common Common (K − 1)(p − K/2) + K(K − 1)/2 + 1
DFM[αkj βk] Diagonal Free (K − 1)(p − K/2) + K2

DFM[αkj β] Diagonal Common (K − 1)(p − K/2) + K(K − 1) + 1
DFM[αkβk] Spherical Free (K − 1)(K − 1)(p − K/2) + 2K

DFM[αkβ] Spherical Common (K − 1)(p − K/2) + K + 1
DFM[αj βk] Diagonal & Common Free (K − 1)(p − K/2) + (K − 1) + K

DFM[αj β] Diagonal & Common Common (K − 1)(p − K/2) + (K − 1) + 1
DFM[αβk] Spherical & Common Free (K − 1)(p − K/2) + K + 1
DFM[αβ] Spherical & Common Common (K − 1)(p − K/2) + 2

Figure 20: The 11 submodels of the model DFM[Σkβ].



Inference: the FunFEM algorithm

We propose to rely for inference on an EM algorithm:

• the EM algorithm iteratively maximize the model likelihood by maximizing a lower bound

L(q(Z ); θ):

log(p(X |θ)) = L(q(Z ); θ) + KL(q(Z )||p(Z |X , θ)),

where:

• L(q(Z); θ) =
∑

Z q(Z) log(p(X ,Z |θ)/q(Z)),

• KL(q(Z)||p(Z |X , θ)) = −
∑

Z q(Z) log(p(X |Z , θ)/q(Z)) is the KL divergence between q(Z)

and p(Z |X , θ).

The EM algorithm:

• E step: θ is fixed and L is maximized over q ⇒ q∗(Z ) = p(Z |X , θ)

• M step: L(q∗(Z ), θold) is now maximized over θ

L(q∗(Z ), θold) =
∑
Z

p(Z |X , θold) log(p(X ,Z |θ)/p(Z |X , θold))

= E [log(p(X ,Z |θ)|θold ] + c .
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The FunFEM algorithm

The FunFEM algorithm alternates over:

• a E step which computes the posterior probabilities tik = E [zik = 1|yi ],

• a F step which determines the orientation matrix U according to the t
(q)
ik by solving:

max
U

Var [E [ω(X )|Z ]]

Var [ω(X )]
, wrt

∫
uj(t)ul(t)dt = 0, ∀j 6= l

where ω(X ) =
∫ T

0
X (t)u(t)dt is the projection of X on the function u.

Proposition: U is solution of the generalized eigenproblem

Γ′TT′ΓW ν = ηΓ′ΓW ν,

where Γ = (γij)i,j , T =

(
t

(q−1)
ik√
n

(q−1)
k

)
i,k

and W =
∫

[0,T ]
Ψ(s)Ψ′(s)ds.

• a M step which updates the mixture parameters.
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Model selection

Model selection:

• there remains two open problems that can be solved through model selection:

• choosing the number K of groups,

• choosing the most appropriate model of the DFM family.

Model selection criteria:

• the most popular criterion is probably BIC (Schwarz, 1978):

BIC(M) = `(θ̂)− ξ(M)

2
log(n),

• a more recent and “data driven” criterion is the slope heuristic (Birgé & Massart, 2004):

SHC(M) = `(θ̂)− 2 ŝ ξ(M),

where ŝ is estimated from the data.



The data

The data set:

• 1 month of station occupancy data

collected on the Paris’ Velib system,

• the data were collected every 1 hour over

5 weeks (February, 24 - March, 30, 2014),

• we normalized the number of available

bikes by the station size and get a loading

profile for each station,

• the final data set contains 3230 loading

profiles sampled at 1448 time points,

• the curves were finally smoothed on a

basis of 41 Fourrier functions.

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

curve 1
curve 2

curve 3
curve 4

curve 5
curve 6

2014−02−24 2014−02−25 2014−02−26 2014−02−27 2014−02−28 2014−03−01 2014−03−02
date

st
at

io
n 

lo
ad

in
g

Smoothed Curves

Figure 21: Some examples of the smoothed

station profiles, with the corresponding

observations.
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Figure 22: Model selection for Paris data: log-likelihood with respect to model dimensionality and its

estimated linear part (left), slope heuristic criterion with respect to K (right).
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Figure 23: Cluster mean profiles together with 1000 randomly sampled curves.
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Conclusion



Conclusion

Model-based classification for HD or functional data:

• is an efficient and flexible tool for classification / clustering,

• it provides in addition information about the classification risk.

Our contributions:

• we proposed two models adapted to the classification of HD data and their associated

inference algorithms,

• they model and cluster the data in low-dimensional (and discriminative) subspaces,

• they usually performs better than other clustering methods while providing a useful

visualizations,

• they allow in addition to identify the original variables which are discriminative.

Software (R packages):

• package HDclassif for the HDDA and HDDC methods,

• package FisherEM for the Fisher-EM algorithm,

• package funFEM for the fun-FEM algorithm.
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